Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T16:06:18.188Z Has data issue: false hasContentIssue false

The Growth of Tin Oxide Aerogels: Theoretical Modeling and Experimental Characterizations

Published online by Cambridge University Press:  08 April 2015

Carlo Requião da Cunha
Affiliation:
PPGFis/PGMicro – Departmento de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
Fábio Dias da Silva
Affiliation:
PPGFis/PGMicro – Departmento de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
Renzo Morales
Affiliation:
Materials Science and Engineering, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
Get access

Abstract

Tin oxide aerogels were synthesized using the epoxide-assisted technique and characterized with X-ray diffraction, diffusive reflectance spectroscopy, particle-induced X-ray emission and scanning electron microscopy. Our results indicate that the material is electrically semi-insulating as the result of oxygen vacancies that appear as fixed charges at the bottom of the conduction band. A modification of the technique with the addition of hydrogen peroxide is proposed to reduce the levels of defects and enhance the optical transparency of the material.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Morales, R. V., da Cunha, C. R., and Rambo, C. R., Physica A 406, 131 (2014).CrossRefGoogle Scholar
da Rocha, E. L., and da Cunha, C. R., Chaos, Soliton. Fract. 44, 241 (2011).CrossRefGoogle Scholar
da Cunha, C. R., Toffolo, G. H., Dos Santos, C. E. I., and Pezzi, R. P., J. Non-Cryst. Sol. 380, 48 (2013).CrossRefGoogle Scholar
Baumann, T. F., Kucheyev, S. O., Gash, A. E., and Satcher, J. Jr., Adv. Mat. 17, 1546 (2005).CrossRefGoogle Scholar
Kubelka, P., and Munk, F., Z. Tech. Phys. (Leipzig) 12, 53 (1931).Google Scholar
Burstein, E., Phys. Rev. B 93, 632 (1954).CrossRefGoogle Scholar
Moss, T. S., Proc. Phys. Soc. 67, 775 (1954).CrossRefGoogle Scholar
Trani, F., Causà, M., Ninno, D., Cantele, G. and Barone, V., Phys. Rev. B 77, 245410 (2008).CrossRefGoogle Scholar
Shanthi, E., Dutta, V., Banerjee, A. and Chopra, K. L., J. Appl. Phys. 51, 6243 (1980).CrossRefGoogle Scholar
Johnson, E. J. and Fan, H. Y., Phys. Rev. 139, A1991 (1965).CrossRefGoogle Scholar
Wojdyr, M., J. Appl. Crystallogr. 43, 1126 (2010).CrossRefGoogle Scholar
Kilic, C., and Zunger, A., Phys. Rev. Lett. 88, 095501 (2002).CrossRefGoogle Scholar
Noor, N. and Parkin, I. P., Thin Solid Films 532, 26 (2013).CrossRefGoogle Scholar
Tatsumi, K., Kunisu, M., Nakano, M., Tanaka, I., Oba, F., and Adachi, H., Mater. Trans. 43, 1426 (2002).Google Scholar
Tiwari, S., Rana, F., Chan, K., Shi, L., and Hanafi, H., Appl. Phys. Lett. 69, 1232 (1996).CrossRefGoogle Scholar