No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Crystalline 3C-SiC thin films were successfully grown on (100) and (111) Si substrates by using ArF pulsed laser ablation from a SiC ceramic target combined with a vacuum annealing process. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were employed to study the effect of annealing on the structure of thin films deposited at 800°C. It was demonstrated that vacuum annealing could transform the amorphous SiC films into crystalline phase and that the crystallinity was strongly dependent on the annealing temperature. For the samples deposited on (100) and (111) Si, the optimum annealing temperatures were 980 and 920°C, respectively. Scanning electron microscope (SEM) micrographs exhibited different characteristic microstructure for the (100) and (111) Si cases, similar to that observed for the carbonization layer initially formed in chemical vapor deposition of SiC films on Si. This also showed the presence of the epitaxial relationship of 3C-SiC[100]//Si[100] and 3C-SiC[111]//Si[111] in the direction of growth.