Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T20:36:05.664Z Has data issue: false hasContentIssue false

Growth of Multi Walled CNX Nanotubes: The Role of Synthesis Methods

Published online by Cambridge University Press:  15 February 2011

M. Castignolles
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR5581), Université Montpellier II, Place E. Bataillon, CC026, 34095 Montpellier Cedex 5, France Laboratoire d'Etude des Microstructures, ONERA-CNRS (UMR104) 29, Avenue de la Division Leclerc, BP 72, 92322 Châtillon, Cedex, France
A. Loiseau
Affiliation:
Laboratoire d'Etude des Microstructures, ONERA-CNRS (UMR104) 29, Avenue de la Division Leclerc, BP 72, 92322 Châtillon, Cedex, France
S. Enouz
Affiliation:
Laboratoire d'Etude des Microstructures, ONERA-CNRS (UMR104) 29, Avenue de la Division Leclerc, BP 72, 92322 Châtillon, Cedex, France
P. Bernier
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR5581), Université Montpellier II, Place E. Bataillon, CC026, 34095 Montpellier Cedex 5, France
M. Glerup
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR5581), Université Montpellier II, Place E. Bataillon, CC026, 34095 Montpellier Cedex 5, France
Get access

Abstract

Multi walled nitrogen doped nanotubes were synthesized using two different methods. The growth mechanism and nitrogen concentration of the nanotubes synthesized by both methods are discussed and studied. The morphology and nitrogen concentration of the nanotubes are seen to strongly depend on the synthesis methods. The results are based on detailed high resolution transmission electron microscopy (HRTEM) data coupled with electron energy loss spectroscopy (EELS).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carroll, D.L., Redlich, Ph., Blase, X., Charlier, J.-C., Ajayan, S.P.M., Roth, S. and Rühle, M., Phys. Rev. Lett. 81, 2332 (1998)Google Scholar
2. Miyamoto, Y., Cohen, M.L. and Louie, S.G., Solid State Commun. 102, 605 (2002)Google Scholar
3. Terrones, M., Terrones, H., Grobert, N., Hsu, W.K., Zhu, Y.Q., Hare, J.P., Kroto, H.W., Walton, D.R.M., Kohler-Redlich, Ph., Rühle, M., Zhang, J.P. and Cheetham, A.K., Appl. Phys. Lett. 75, 3932 (1999)Google Scholar
4. Glerup, M., Castignolles, M., Holzinger, M., Hug, G., Loiseau, A. and Bernier, P., submitted Chem. Comm.Google Scholar
5. Glerup, M., Kanzow, H., Castignolles, M., Almairac, R., Bernier, P., submitted Chem. Phys. Lett.Google Scholar
6. Glerup, M., Kanzow, H., Almairac, R., Bernier, P. in Electronic Properties of Novel Materials - XVI International Winterschool, edited by Kuzmany, H., Fink, J., Mehring, M., Roth, S., (AIP Conference Proceedings 633, pp.161164, Woodbury, New York, 2002).Google Scholar
7. Terrones, M., Redlich, Ph., Grobert, N., Trasobares, S., Hsu, W.K., Terrones, H., Zhu, Y.Q., Hare, J.P., Cheetham, A.K., Rhüle, M., Kroto, H.W., Walton, D.R.M., Adv. Mater. 11, 655 (1999)Google Scholar
8. Grobert, N., PhD. Thesis, University of Sussex (2000).Google Scholar
9. Trasobares, S., Stéphan, O., Colliex, C., Hsu, W.K., Kroto, H.W. and Walton, D.R.M., J. Chem. Phys. 116, 8966 (2002)Google Scholar