Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T12:49:43.948Z Has data issue: false hasContentIssue false

Growth of Large Diameter 6H SI and 4H n+ SiC Single Crystals

Published online by Cambridge University Press:  01 February 2011

Avinash Gupta
Affiliation:
[email protected], II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Ping Wu
Affiliation:
[email protected], II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Varatharajan Rengarajan
Affiliation:
[email protected], II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Xueping Xu
Affiliation:
[email protected], II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Murugesu Yoganathan
Affiliation:
[email protected], II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Cristopher Martin
Affiliation:
[email protected], II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Ejiro Emorhokpor
Affiliation:
[email protected], II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Andrew Souzis
Affiliation:
[email protected], II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Ilya Zwieback
Affiliation:
[email protected]@optonline.net, II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Thomas Anderson
Affiliation:
[email protected], II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Get access

Abstract

SiC single crystals are grown at II-VI by the seeded sublimation technique. The process has been scaled up and optimized to support commercial production of high-quality 100 mm diameter, Semi-Insulating (SI) 6H substrates and 100 mm 4H n+ substrates. The growth process incorporates special elements aimed at achieving uniform sublimation of the source, steady growth rate, uniform doping and reduced presence of background impurities.

Semi-insulating 6H substrates are produced using precise vanadium compensation. Vanadium doping is optimized to yield SI material with very high resistivity and low capacitance.

Crystal quality of the substrates is evaluated using a wide variety of techniques. Specific defects, their interaction and evolution during growth are described with emphasis on micropipes and dislocations. The current quality of the 6H SI and 4H n+ crystals grown at II-VI is summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Balakrishna, V. et al., US Patent No. 6,056,820 (2000).Google Scholar
2 Tairov, Y. and Tsvetkov, V., J. Crystal Growth, 243, 209 (1978).Google Scholar
3 Gupta, A., Semenas, E. and Zwieback, I., US Patent No. 7,547,360 (2009).Google Scholar
4 Gupta, A., Semenas, E., Zwieback, I., Barrett, D., Souzis, A., US Patent No. 7,608,524 (2009).Google Scholar
5Patent pending.Google Scholar
6 Snyder, D. and Everson, W., US Patent No. 6,800,136 (2004).Google Scholar
7The Schottky barrier capacitance C of the substrate is measured using the standard 0.63mm2Hg probe at f=10 kHz and zero bias.Google Scholar
8 Lebedev, A. A., “Deep Level Centers in Silicon Carbide: A Review”, Semiconductors, 33, No. 2, 107 (1999).Google Scholar
9 Jenny, J., Muller, S., Powell, A., Tsvetkov, V., Hobgood, H., Glass, R., Carter, C. Jr , J. Electron. Mater. 31, 366 (2002).Google Scholar
10 Mitchel, W. C., Mitchell, W. D., Zvanut, M., Landis, G., Solid-State Electron. 48, 1693 (2004).Google Scholar
11 Mitchel, W. C., Mitchelll, W. D., Smith, S., Evwaraye, A., Fang, Z., Look, D., Sizelove, J., in Silicon Carbide 2006: Materials, Processing and Devices, MRS Proc. 911.Google Scholar
12 Barrett, D., US Patent No. 5,611,955 (1997).Google Scholar
13 Bickermann, M., Epelbaum, B. M., Hofmann, D., Straubinger, T. L., Weingärtner, R., Winnacker, A., J. Crystal Growth, 233, 211 (2001).Google Scholar
14 Bickermann, M., Hofmann, D., Straubinger, T. L., Weingärtner, R., Winnacker, A., Mater. Sci. Forum, 389–393, 139 (2002).Google Scholar
15 Bickermann, M., Hofmann, D., Straubinger, T. L., Weingärtner, R., Winnacker, A., Mater. Sci. Forum, 433–436, 51 (2003).Google Scholar
16 Bickermann, M., Weingärtner, R., Winnacker, A., J. Crystal Growth, 254, 390 (2003).Google Scholar
17 Bickermann, M., Irmscher, K., Weingärtner, R., Winnacker, A., Mater. Sci. Forum, 457–460, 787 (2004).Google Scholar
18 Stibal, R., Müller, S., Jantz, W., Pozina, G., Magnusson, B. and Ellison, A., Phys. Stat. Sol. C3, 1013 (2003)Google Scholar
19 Ohtani, N., Katsuno, M., Tsuge, H., Fujimoto, T., Nakabayashi, M., Yashiro, H., Sawamura, M., Aigo, T., J. Crystal Growth, 286, 55 (2006).Google Scholar
20 Nakamura, D., Yamaguchi, S., Gunjishima, I., Hirose, Y., Kimoto, T., J. Crystal Growth, 304, 57 (2007).Google Scholar
21 Xu, X., Vaudo, R. P., Salant, A., Malcarne, J., Flynn, J. S., Hutchins, E. L., Dion, J. A. and Brandes, G. R., in Proceedings of International Conference on High Temperature Electronics 2003, ed. Johnston, C., Vermessan, O. and Crossley, A., p 43.Google Scholar
22 Dudley, M., Huang, X. R., Huang, W., Powell, A., Wang, S., Neudeck, P., and Skowronski, M., Appl. Phys. Let. 75, 784 (1999).Google Scholar
23 Ohtani, N. et al., J. Appl. Phys., 45, 1738 (2006).Google Scholar
24 Powell, A., Brady, M., Tsvetkov, V., US Patent No. 7,294,324 (2007).Google Scholar
25 Dudley, M. (private communication).Google Scholar