Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T03:11:47.653Z Has data issue: false hasContentIssue false

The Growth of InAsSb/InGaAs Strained-Layer Superlattices by Metal-Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  22 February 2011

R. M. Biefeld
Affiliation:
Sandia National Laboratory, Albuquerque, NM
K. C. Baucom
Affiliation:
Sandia National Laboratory, Albuquerque, NM
S. R. Kurtz
Affiliation:
Sandia National Laboratory, Albuquerque, NM
D. M. Follstaedt
Affiliation:
Sandia National Laboratory, Albuquerque, NM
Get access

Abstract

We have grown InAsl-xSbx/Inl-yGayAs strained-layer superlattice (SLS) semiconductors lattice matched to InAs using a variety of conditions by metal-organic chemical vapor deposition. The V/III ratio was varied from 2.5 to 10 at a temperature of 475 °C, at pressures of 200 to 660 torr and growth rates of 3 - 5 A/s and layer thicknesses ranging from 55 to 152 Å. The composition of the InAsSb ternary can be predicted from the input gas molar flow rates using a thermodynamic model. At lower temperatures, the thermodynamic model must be modified to take account of the incomplete decomposition of arsine and trimethylantimony. Diodes have been prepared using Zn as the p-type dopant and undoped SLS as the n-type material. The diode was found to emit at 3.56 μm. These layers have been characterized by optical microscopy, SIMS, x-ray diffraction, and transmission electron diffraction. The optical properties of these SLS's were determined by infrared photoluminescence and absorption measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Menna, R. J., Capewell, D. R., Martinelli, R. U., York, P. K., and Enstrom, R. E., Appl. Phys. Lett. 52, (1991) 2127.CrossRefGoogle Scholar
[2] Biefeld, R. M., J. Crystal Growth 27 (1986) 255.CrossRefGoogle Scholar
[3] Biefeld, R. M., Kurtz, S. R., and Casalnuovo, S. A., J. Crystal Growth 124 (1992) 401.CrossRefGoogle Scholar
[4] Biefeld, R. M., Hills, C. R. and Lee, S. R., J. Crystal Growth 21 (1988) 515.CrossRefGoogle Scholar
[5] Kurtz, S. R. and Biefeld, R. M., Phys. Rev. B 44, 1143 (1991).CrossRefGoogle Scholar
[6] Biefeld, R. M., J. Crystal Growth 75 (1986) 255.CrossRefGoogle Scholar
[7] Larsen, C. A., Li, S. H., Buchan, N. I., and Stringfellow, G. B., J. Crystal Growth, 102 (1990) 126.CrossRefGoogle Scholar
[8] Fang, Z. M., Ma, K. Y., Jaw, D. H., Cohen, R. M., and Stringfellow, G. B., J. Appl. Phys. 67, 7034 (1990).CrossRefGoogle Scholar
[9] Kurtz, S. R., Dawson, L. R., Biefeld, R. M., Follstaedt, D. M., and Doyle, B. L., Phys. Rev. B 46, 1909 (1992).CrossRefGoogle Scholar
[10] Wei, Su-Huai and Zunger, Alex, Appl. Phys. Lett. 5, 2684 (1991).CrossRefGoogle Scholar
[11] Esina, N. P., Zotova, N. V., Matveev, B. A., Stus, N. M.', Talalakin, G. N., and Abishev, T. D., Soy. Tech. Phys. Lett. 2, 167 (1983).Google Scholar
[12] Krier, A., Appl. Phys. Lett. 56, 2428 (1990).CrossRefGoogle Scholar