Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:26:33.201Z Has data issue: false hasContentIssue false

Growth of Heteroepitaxial Lead Chalcogenide Infrared Detector Arrays on Fluoride Coveredsilicon Substrates

Published online by Cambridge University Press:  28 February 2011

H. Zogg
Affiliation:
Swiss Federal Institute of Technology and AFIF, CH–8093 ZUrich, Switzerland
W. Vogt
Affiliation:
Swiss Federal Institute of Technology and AFIF, CH–8093 ZUrich, Switzerland
H. Melchior
Affiliation:
Swiss Federal Institute of Technology and AFIF, CH–8093 ZUrich, Switzerland
Get access

Abstract

Composition graded buffer layers of group Ila fluorides allow the heteroepitaxial growthof device quality narrow gap lead chalcogenides onto Si. Mechanical stresses in the layers are almost completely relaxed at room temperature despite large thermal expansion mismatches. Photovoltaic infrared sensors with up to about 9.5 um cut—off wavelengths and which operate at or near the 300K background noise limit have been fabricated in such PbTe and (Pb,Sn)Se on Si structures.

Furthermore, epitaxial graded fluoride buffers seem to be suited to connect other semiconductors with even large lattice mismatches. Initial heteroepitaxial growth of CdTe on fluoride/Si(lll) substrates (mismatch 20%) supports such more general applications.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Holloway, H., Phys. Thin Films 11, 105, 1981.Google Scholar
[2] Asano, T., Ishiwara, H., Kaifu, N., Jap. J. Appl. Phys. 22, 1474, 1983.CrossRefGoogle Scholar
[3] Schowalter, L.J., Fathauer, R.W., Goehner, R.P., Turner, L.G., DeBlois, R.W., Hashimoto, S., Peng, J.-L., Gibson, W.M., Krusius, J.P., J. Appl. Phys. 58, 302, 1985.CrossRefGoogle Scholar
[4] Smith, T.P. III, Phillips, J.M., Augustyniak, W.M., Stiles, P.J., Appl. Phys. Lett. 45, 907, 1984.CrossRefGoogle Scholar
[5] Siskos, S., Fontaine, C., Munoz-Yague, A., J. Appl. Phys. 56, 1642, 1984.CrossRefGoogle Scholar
[6] Tu, C.W., Sheng, T.T., Macrander, A.T., Phillips, J.M., Guggenheim, H.J., J. Vac. Sci. Technol. B2, 24, 1984.CrossRefGoogle Scholar
[7] Zogg, H., Vogt, W., Melchior, H., Appl. Phys. Lett. 45, 286, 1984.CrossRefGoogle Scholar
[8] Onoda, H., Katoh, T., Hirashita, N., Sasaki, M., Techn. Digest, Int. Electron Devices Meeting IEDM, Washington D.C. Dec. 1985, p. 680.Google Scholar
[9] Asano, T., Ishiwara, H., Jap. J. Appl. Phys. 21, L630, 1982.CrossRefGoogle Scholar
[10] Fathauer, R.W., Schowalter, L.J., Lewis, N., Hall, E.L., Proc. Mat. Res. Soc. Meeting, Boston Dec. 1985, Vol. 54, to be published.Google Scholar
[11] Siskos, S., Fontaine, C., Munoz-Yague, A., Appl. Phys. Lett. 44, 1146, 1984.CrossRefGoogle Scholar
[12] Sullivan, P.W., Bower, J.E., J. Vac. Sci. Technol. B3, 674, 1985.CrossRefGoogle Scholar
[13] Tsutsui, K., Ishiwara, H., Furukawa, S., Appl. Phys. Lett. 48, 587,1986.CrossRefGoogle Scholar
[14] Vogt, W., Zogg, H., Melchior, H., Infrared Phys. 25, 611, 1985.CrossRefGoogle Scholar
[15] Zogg, H., Vogt, W., Melchior, H., Proc. CIRP 3, ZUrich, July 23-27 1984, Infrared Phys. 25, 333, 1985.Google Scholar
[16] Zogg, H., Hippi, M., Appl. Phys. Lett. 47, 133, 1985.CrossRefGoogle Scholar
[17] Zogg, H., Maier, P., Norton, P., Proc. Mat. Res. Soc. Meeting, Boston Dec. 1985, Vol. 56, to be published.Google Scholar
[18] Ishiwara, H., Kanemaru, S., Asano, T., Furukawa, S., Jap. J. Appl. Phys. 24, L56, 1985.CrossRefGoogle Scholar
[19] Zogg, H., Vogt, W., Melchior, H., Proc. SPIE 587, to be published.Google Scholar
[20] Zogg, H., Maier, P., Ospelt, M., Thin Solid Films 129, 329, 1985.CrossRefGoogle Scholar
[21] Sullivan, P.W., R.Farrow, F.C., Jones, G.R., J. Cryst. Growth 60, 403, 1984.CrossRefGoogle Scholar
[22] Zogg, H., HUppi, M., Maier, P., Knobel, R., Helv. Phys. Acta 59, 164, 1986.Google Scholar
[23] Himpsel, F. J., Hillebrecht, H.U., Hughes, G., Jordan, J.L., Karlsson, U.O., McFeely, F.R., Morar, J.F., Rieger, D., Appl. Phys. Lett. 48, 596, 1986.CrossRefGoogle Scholar
[24] Zogg, H., Vogt, W., Baumgartner, W., Solid St. Electron. 25, 1147, 1982.CrossRefGoogle Scholar
[25] Zogg, H., Norton, P., Techn. Digest Int. Electron Devices Meeting IEDM, Washington D.C. Dec. 1985, p. 121.Google Scholar
[26] Hashimoto, S., Peng, J.-L., Gibson, W.M., Schowalter, L.J., Fathauer, R.W., Appl. Phys. Lett. 47, 1071, 1985.CrossRefGoogle Scholar
[27] Jacobs, S.F., Sargent, M. III, Infrared. Phys. 10, 233, 1970.CrossRefGoogle Scholar