Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T21:18:46.445Z Has data issue: false hasContentIssue false

Growth of epitaxial CeO2 buffer layers by polymer assisted deposition

Published online by Cambridge University Press:  11 July 2012

A. Calleja*
Affiliation:
Institut de Ciència de Materials de Barcelona-Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Bellaterra, Catalonia, Spain
R. B. Mos
Affiliation:
Institut de Ciència de Materials de Barcelona-Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Bellaterra, Catalonia, Spain Technical University of Cluj, Cluj-Napoca, Romania
P. Roura
Affiliation:
GRMT, Dept. of Physics, University of Girona, Campus Montilivi, Edif. PII, E17071 Girona, Catalonia, Spain
J. Farjas
Affiliation:
GRMT, Dept. of Physics, University of Girona, Campus Montilivi, Edif. PII, E17071 Girona, Catalonia, Spain
J. Arbiol
Affiliation:
Institut de Ciència de Materials de Barcelona-Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Bellaterra, Catalonia, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Catalonia, Spain
L. Ciontea
Affiliation:
Technical University of Cluj, Cluj-Napoca, Romania
X. Obradors
Affiliation:
Institut de Ciència de Materials de Barcelona-Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Bellaterra, Catalonia, Spain
T. Puig
Affiliation:
Institut de Ciència de Materials de Barcelona-Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Bellaterra, Catalonia, Spain
*
*Corresponding author at: [email protected]
Get access

Abstract

Polymer assisted deposition (PAD) has been reported as a novel CSD approach for thin film growth with improved homogeneity and long stability by forming a metal polymer species. It also offers the interesting possibility of having a library of PAD solutions for each precursor metal and obtaining the required composition by simple mixing. Another potential advantage is the increase in thickness since mechanical stresses are expected to be alleviated during shrinkage in the metalorganic decomposition by the metal-polymer network.

Cerium oxide films on YSZ single crystals were grown from water-based solutions containing cerium nitrate, polyethyleneimine and complexing EDTA, in order to explore the benefits of using the PAD approach for growing buffer layers in coated conductors. An ultrafiltration step was performed to remove the non-coordinated species in solution. The degree of purification and efficiency in the cerium recovery was investigated by different techniques. TGA-DTA analysis was used to provide guidance to the best thermal profiles in different atmospheres and specially to diminish the adverse effects of exothermic events during decomposition. Microstructural evolution was tracked by AFM and TEM, while epitaxial fraction was followed by X-ray diffraction. The results show the high importance of choosing the proper atmosphere and the need for tuning of heating ramps to obtain dense, flat and epitaxial ceria films by PAD.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Trovarelli, A., Catalysis Review Science and Engineering, 38, 439 (1996).Google Scholar
2. Mogensen, M., Sammes, N.M., Tompsett, G.A., Solid State Ionics, 129, 63 (2000).Google Scholar
3. Harrison, B., Diwell, A.F., Hallet, C., Platinum Metals Review, 32, 73 (1988).Google Scholar
4. Chiu, F.C., Lai, C. M.. Journal of Physics D: Applied Physics, 43, 075104 (2010).Google Scholar
5. Coll, M., Gazquez, J., Sandiumenge, F., Puig, T., Obradors, X., Espinos, J. P., Hühne, R., Nanotechnology 2008, 19, 395601.Google Scholar
6. Cavallaro, A., Sandiumenge, F., Gazquez, J., Puig, T., Obradors, X., Arbiol, J., Freyhardt, H.C., Adv. Funct. Mater. 2006, 16,(10) 1363-1372.Google Scholar
7. Coll, M., Gazquez, J., Hühne, R., Holzapfel, B., Morilla, Y., Garcia-Lopez, J., Pomar, A., Sandiumenge, F., Puig, T., Obradors, X., J. Mater. Res. 2009, 24,(4) 14461455.Google Scholar
8. Jia, Q.X., McCleskey, T.M., Burrell, A.K., Lin, Y., Collis, G. E., Wang, H., Li, A.D.Q., Foltyn, S.R., Nature Materials, 3, 529 (2004).Google Scholar
9. Jain, M., Bauer, E., Lin, Y., Wang, H., Burrell, A.K., McClesky, T.M., Jia, Q.X., Integrated Ferroelectrics, 100, 132139 (2008).Google Scholar
10. Luo, H. M., Jain, M., Baily, S. A., McCleskey, T. M., Burrell, A. K., Bauer, E., DePaula, R. F., Dowden, P. C., Civale, L., Jia, Q. X., Journal of Physical Chemistry B, 111, 74977500 (2007).Google Scholar
11. Martell, A.E., Smith, R.M., Critical stability constants, vol. 2. Plenum Press, New York (1975).Google Scholar
12. Smith, R.M., Martell, A.E., Critical stability constants, vol. 3. Plenum Press, New York (1977).Google Scholar
13. Coll, M., Pomar, A., Puig, T., Obradors, X., Applied Physics Express, 1, 121701 (2008).Google Scholar
14. Lanigan, K.C., Pidsosny, K., Vibrational Spectroscopy, 45, 29 (2007).Google Scholar
15. Obradors, X., Martínez-Julian, F., Zalamova, K., Vlad, V. R., Pomar, A., Palau, A., Llordés, A., Chen, H., Coll, M., Ricart, S., Mestres, N., Granados, X., Puig, T., Rikel, M., Physica C, in press, DOI 10.1016/j.physc.2012.04.020.Google Scholar