Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:21:35.206Z Has data issue: false hasContentIssue false

Growth of Branched Carbon Nanostructures in Nanopatterned Surfaces Created by Focused Ion Beam

Published online by Cambridge University Press:  01 February 2011

Francisco Solá
Affiliation:
University of Puerto Rico, Physics, Ponce de Leon Av., Rio Piedras, 00931, Puerto Rico, 787-4695433
Oscar Resto
Affiliation:
[email protected], University of Puerto Rico, Physics, Ponce de Leon Av., Rio Piedras, 00931, Puerto Rico
Azlin Biaggi-Labiosa
Affiliation:
[email protected], University of Puerto Rico, Physics, Ponce de Leon Av., Rio Piedras, 00931, Puerto Rico
Luis F Fonseca
Affiliation:
[email protected], University of Puerto Rico, Physics, Ponce de Leon Av., Rio Piedras, 00931, Puerto Rico
Get access

Abstract

A method to grow arrays of multibranched carbon nanostructures is explained. We use the electron-beam-induced deposition method using a transmission electron microscope with ∼10−6 Torr vacuum where hydrocarbons are present in the chamber. Saw-tooth nano-patterns were made with a focused ion beam in porous silicon substrates. Due to the dielectric properties of the films the patterns provide the corresponding sites in which high local electric fields appear during irradiation thus allowing the hydrocarbons to become preferentially attracted to those active sites. We found that the adequate ion dose to create well defined saw-tooth nano-patterns was between 8 and 10 nC/μ2 at 30 kv. Electron energy-loss spectroscopy on the branched carbon nanostructures show a high concentration of sp2 sites suggesting that they are made of graphite-like amorphous carbon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xie, G., Song, M., Furuya, K., Louzguine, D. and Inoue, A., Appl. Phys. Lett. 88, 263120 (2006)Google Scholar
2. Banhart, F., Phys. Rev. E 52, 5156(1995)Google Scholar
3. Mitsuishi, K., Shimojo, M., Han, M. and Furuya, K., Appl. Phys. Lett. 83, 2064 (2003)Google Scholar
4. Solá, F., Resto, O., Biaggi-Labiosa, A. and Fonseca, L.F, Nanotechnology 18, 405308 (2007)Google Scholar
5. Davis, C.A., Silva, S.R.P., Dunin-Borkowski, R.E., Amaratunga, G.A.J., Knowles, K.M and Stobbs, W.M, Phys. Rev. Lett. 75, 4258(1995)Google Scholar
6. Lifshitz, Y., Kasi, S.R, Rabalais, J.W and Eckstein, W., Phys. Rev. B 41, 10468(1990)Google Scholar
7. Silva, S.R.P., Properties of Amorphous Carbon, No. 29 (Inspec:London, UK, 2003) p 4.Google Scholar
8. Cullis, A.G, Canham, L.T and Calcott, P.D.J., J. App. Phys. 82, 909(1997)Google Scholar
9. Canham, L.T, Cullis, A.G, Pickering, C., Dosser, O.D, Cox, T.I and Lynch, T.P, Nature 368, 133(1994)Google Scholar
10. Yuan, J. and Brown, L.M, Micron 31, 515(2000)Google Scholar
11. Balberg, I., Phil. Mag. B 80, 691(2000)Google Scholar
12. Hopman, W.C.L., Ay, F., Hu, W., Gadgil, V. J., Kuipers, L., Pollnau, M. and Ridder, R. M. de, Nanotechnology 18, 195305 (2007)Google Scholar
13. Chelnokov, A., Wang, K., Rowson, S., Garoche, P. and Lourtioz, J.M, Appl. Phys. Lett. 77, 2943 (2000)Google Scholar
14. Resto, O., Fonseca, L.F, Weisz, S.Z, Many, A. and Goldstein, Y. in Microcrystalline and Nanocrystalline Semiconductors, edited by Canham, L.T, Sailor, M.J, Tanaka, K. and Tsai, C.(Mater. Res. Soc. Symp. Proc. 536, Boston, MA, 1999)pp. 229234.Google Scholar
15. Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope, 2 nd ed (Plenum Press, New York, 1996) p 383.Google Scholar
16. Titantah, J.T and Lamoen, D., Phys. Rev. B 70, 075115 (2004)Google Scholar