Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T23:10:09.445Z Has data issue: false hasContentIssue false

Growth, Behavior, and Applications of Strained InGaAs/GaAs Multiple Quantum well Based Asymmetric Fabry-Perot Reflection Modulators

Published online by Cambridge University Press:  26 February 2011

Kezhong Hu
Affiliation:
Photonic Materials and Devices Laboratory National Center for Integrated Photonic Technology, University of Southern California, Los Angeles, CA 90089 – 0241
Li Chen
Affiliation:
Photonic Materials and Devices Laboratory National Center for Integrated Photonic Technology, University of Southern California, Los Angeles, CA 90089 – 0241
A. Madhukar
Affiliation:
Photonic Materials and Devices Laboratory National Center for Integrated Photonic Technology, University of Southern California, Los Angeles, CA 90089 – 0241
P. Chen
Affiliation:
Photonic Materials and Devices Laboratory National Center for Integrated Photonic Technology, University of Southern California, Los Angeles, CA 90089 – 0241
Q. Xie
Affiliation:
Photonic Materials and Devices Laboratory National Center for Integrated Photonic Technology, University of Southern California, Los Angeles, CA 90089 – 0241
K. C. Rajkumar
Affiliation:
Photonic Materials and Devices Laboratory National Center for Integrated Photonic Technology, University of Southern California, Los Angeles, CA 90089 – 0241
K. Kaviani
Affiliation:
Photonic Materials and Devices Laboratory National Center for Integrated Photonic Technology, University of Southern California, Los Angeles, CA 90089 – 0241
Get access

Abstract

We report the realization of all-optical photonic switches using strained InGaAs/GaAs multiple quantum well based inverted cavity asymmetric Fabry-Perot reflection modulators monolithically integrated with GaAs/AlGaAs based heterojunction phototransistors. The photonic switches show both bistable and non-bistable switching behavior with a contrast ratio of 12:1 and optical gain of 2 to 4 dB. The design and growth considerations for such an integrated structure are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yan, R. H., Simes, R. J. and Coldren, L. A., IEEE Photon. Technol. Lett. 1, 273 (1989).Google Scholar
2. Pezeshki, B., Lord, S. M., and Harris, J. S. Jr,., Appl. Phys. Lett. 52, 888 (1990).Google Scholar
3. Hu, Kezhong, Chen, Li, Madhukar, A., Chen, P., Kyriakakis, C., Karim, Z., and Tanguay, A. R. Jr, Appl. Phys. Lett. 52, 1664 (1991).Google Scholar
4. Hu, Kezhong, Chen, Li, Madhukar, A., Chen, P., Rajkumar, K. C., Kaviani, K., Karim, Z., Kyriakakis, C., and Tanguay, A. R. Jr, Appl. Phys. Lett. 59, 1108 (1991).CrossRefGoogle Scholar
5. Jewell, Jack L., Harbison, J. P., Scherer, A., Lee, Y. H., and Florez, L. T., IEEE J. Quantum Electron. 22, 1332 (1991).Google Scholar
6. Whitehead, M., Parry, G., and Wheatley, P., IEE Proceedings 136, Pt. J, No. 1, 52 (1989).Google Scholar
7. Chen, P., Kim, J. Y., Madhukar, A., and Cho, N. M., J. Vac. Sci. Technol. 134, 890 (1986).Google Scholar
8. Springthorpe, A. J. and Majeed, A., J. Vac. Sci. Technol. B8, 266 (1990).Google Scholar
9. Niki, S., Chang, W. S. C., Wieder, H. H., and Van Eck, T. E., J. Crystal Growth 111, 419 (1991).Google Scholar
10. Madhukar, A., Rajkumar, K. C., Chen, Li, Guha, S., Kaviani, K., and Kapre, R., Appl. Phys. Lett. 57, 2007 (1990).Google Scholar
11. Woodward, T. K., Sizer, Theodore II, Sivco, D. L., and Cho, A. Y., Appl. Phys. Lett. 52, 548 (1990).Google Scholar