Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T03:53:28.797Z Has data issue: false hasContentIssue false

Growth and characterization of transition-metal and rare-earth doped III-nitride semiconductors for spintronics

Published online by Cambridge University Press:  21 March 2011

H. Asahi
Affiliation:
ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
S. Hasegawa
Affiliation:
ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Y.K. Zhou
Affiliation:
ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
S. Emura
Affiliation:
ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Get access

Abstract

Transition metal (Cr) and rare-earth (Dd, Dy) doped III-nitride semiconductor bulk layers and superlattice (SL) structures are grown on sapphire (0001) substrates and GaN (0001) templates by plasma-assisted molecular-beam epitaxy. For the GaGdN/GaN and InGaGdN/GaN SL and Si co-doped samples, enhancement of magnetization and magnetic moment are observed, suggesting the carrier-mediated ferromagnetism. Low temperature growth of GaGdN can increase the Gd concentration and magnetization. Results for the Dy-doped GaN as well as the GaCrN/AlN/GaCrN tunnel magneto-resistance (TMR) diodes are also described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., Katsumoto, S. and Iye, Y., Appl. Phys. Lett. 69, 363 (1996).Google Scholar
2. Chiba, D., Takamura, K., Matsukura, F. and Ohno, H., Appl. Phys. Lett. 82, 3020 (2003).Google Scholar
3. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. and Ferrand, D., Science 287, 1019 (2000).Google Scholar
4. Sato, K. and Katayama-Yoshida, H., Semicond. Sci. Technol. 17, 377 (2002).Google Scholar
5. Sonoda, S., Shimizu, S., Sasaki, T., Yamamoto, Y. and Hori, H., J. Cryst. Growth 237, 1358 (2002).Google Scholar
6. Theodoropoulou, N., Hebard, A. F., Overberg, M. E., Abernathy, C. R., Pearton, S. J., Chu, S. N. G., and Wilson, R. G., Appl. Phys. Lett. 78, 3475 (2001).Google Scholar
7. Reed, M. L., El-Masry, N. A., Stadelmaier, H. H., Ritums, M. K., Reed, M. J., Parker, C. A., Roberts, J. C., and Bedair, S. M., Appl. Phys. Lett. 79, 3473 (2001).Google Scholar
8. Hashimoto, M., Zhou, Y.K., Kanamura, M. and Asahi, H., Solid State Commun. 122, 37 (2002).Google Scholar
9. Hashimoto, M., Tanaka, H., Asano, R., Hasegawa, S., and Asahi, H., Appl. Phys. Lett. 84, 4191 (2004).Google Scholar
10. Park, M., Kuh, K., Myoung, J., Lee, J., Chang, J., Lee, K., Han, S. and Lee, W., Solid State Commun. 124, 11 (2002).Google Scholar
11. Liu, H., Wu, S., Singh, R., Gu, L., Smith, D., Newman, N., Dilley, M., Montes, L. and Simmonds, M., Appl. Phys. Lett. 85, 4076 (2004).Google Scholar
12. Sato, K., Schweika, W., Dederichs, P.H. and Katayama-Yoshida, H., Phys. Rev. B 70, 201202 (2004).Google Scholar
13. Katayama-Yoshida, H., Sato, K., Fukushima, T., Toyoda, M., Kizaki, H., Dinh, V.A. and Dederichs, P.H., J. Mag. Mag. Mat. 310, 2070 (2007).Google Scholar
14. Teraguchi, N., Suzuki, A., Nanishi, Y., Zhou, Y.K., Hashimoto, M. and Asahi, H., Solid State Commun. 122, 651 (2002).Google Scholar
15. Zhou, Y.K., Choi, S.W., Emura, S., Hasegawa, S. and Asahi, H., Appl. Phys. Lett. 92, 062505 (2008).Google Scholar
16. Han, S.Y., Hite, J.K., Thaler, G.T., Frazier, R.M., Abernathy, C.R., Pearton, S.J., Choi, H.K., Lee, W.O., Park, Y.D., Zavada, J.M. and Gwilliam, R., Appl. Phys. Lett. 88, 042102 (2006).Google Scholar
17. Hite, J.K., Frazier, R.M., Davies, R.P., Thaler, G.T., Abernathy, C.R., Pearton, S.J., Zavada, J.M., Brown, E. and Hoemmerich, U., J. Electron. Mat. 36, 391 (2007).Google Scholar
18. Dhar, S., Brandt, O., Ramsteiner, M., Sapega, V.F. and Ploog, K.H., Phys. Rev. Lett. 94, 037205 (2005).Google Scholar
19. Dhar, S., Kammermeier, T., Ney, A., Perez, L., Ploog, K., Melnikov, A. and Wieck, A.D., Appl. Phys. Lett. 89, 062503 (2006).Google Scholar
20. Dalpian, G.M. and Wei, S.H., Phys. Rev. B 72, 115201 (2005).Google Scholar
21. Mitra, C. and Lambrecht, W.R.L., Phys. Rev. B 80, 081202(R) (2009).Google Scholar
22. Hashimoto, M., Tanaka, H., Emura, S., Kim, M.S., Honma, T., Umesaki, N., Zhou, Y.K., Hasegawa, S. and Asahi, H., J. Cryst. Growth 273, 149 (2004).Google Scholar
23. Kim, M. S., Zhou, Y.K., Funakoshi, M., Emura, S., Hasegawa, S. and Asahi, H., Appl. Phys. Lett. 89, 232511 (2006).Google Scholar
24. Mishra, J.K., Dhar, S., Brandt, O., Solid State Commun. 150, 2370.Google Scholar
25. Choi, S.W., Zhou, Y. K., Kim, M. S., Kimura, S., Emura, S., Hasegawa, S. and Asahi, H., Phys. Stat. Sol. (a) 203, 2774 (2006).Google Scholar
26. Zhou, Y.K., Choi, S.W., Kimura, S., Emura, S., Hasegawa, S. and Asahi, H., Thin Solid Films 518, 5659 (2010).Google Scholar
27. Zhou, Y.K., Choi, S.W., Kimura, S., Emura, S., Hasegawa, S. and Asahi, H., J. Supercond and Nov. Magn. 20, 429 (2007) .Google Scholar
28. Zhou, Y.K., Choi, S.W., Emura, S., Hasegawa, S. and Asahi, H., Appl. Phys. Lett. 92, 062505 (2008).Google Scholar
29. Hashimoto, M., Araki, K., Sato, K., Asahi, H. and Katayama-Yoshida, H., Extended Abstracts of the 8th Symposium on the Physics and Application of Spin-related Phenomena in Semiconductors (Sendai, Japan, 2002) pp. 165168.Google Scholar
30. Tawil, S.N.M., Kakimi, R., Krishnamurthy, D., Ishimaru, M., Emura, S., Tambo, H., Hasegawa, S. and Asahi, H., Phys. Stat. Sol. Rap. Res. Lett. 4, 308 (2010).Google Scholar
31. Tawil, S.N.M., Krishnamurthy, D., Ishimaru, M., Emura, S., Hasegawa, S. and Asahi, H., Phys. Stat. Sol. (in press).Google Scholar
32. Zhou, Y.K., Emura, S., Hasegawa, S. and Asahi, H., Phys. Stat. Sol. (in press).Google Scholar