Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T18:51:36.477Z Has data issue: false hasContentIssue false

Growth and characterization of semi-polar (11-22) GaN with in-situ SiNx interlayers

Published online by Cambridge University Press:  01 February 2011

Jonathan Hollander
Affiliation:
[email protected], University of Cambridge, Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom, +44 7816 203930
Clifford McAleese
Affiliation:
[email protected], University of Cambridge, Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
Menno Kappers
Affiliation:
[email protected], University of Cambridge, Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
Colin Humphreys
Affiliation:
[email protected], University of Cambridge, Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
Get access

Abstract

Semi-polar (1122) GaN films were grown on (1100) m-plane sapphire substrates. Growth demonstrated surface striations aligned perpendicular to the in-plane GaN m-axis. SiNx interlayers were incorporated into the as-grown films with the purpose of decreasing the density of defects in the material. Inclusion of interlayers increased the characteristic length of surface striations and feature size. X-ray rocking curves widths are shown to be correlated to specific threading dislocation geometry. Skew-symmetric omega scan peak broadening suggests a decrease in the proportion of screw-type dislocations to edge-type dislocations with increasing number of interlayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Waltereit, P., Brandt, O., Trampert, A., Grahn, H.T., Menniger, J., Ramsteiner, M., Reiche, M., Ploog, K.H., Nature. 406 (2000) 865.Google Scholar
2. Romanov, A.E., Baker, T.J., Nakamura, S., Speck, J.S., J. Appl. Phys. 100 (2006) 023522.Google Scholar
3. Baker, T.J., Haskell, B.A., Wu, F., Speck, J.S., & Nakamura, S., Jpn. J. Appl. Phys. 45 (2006) L154.Google Scholar
4. Kappers, M.J., Hollander, J.L., McAleese, C., Johnston, C.F., Broom, R.F., Barnard, J.S., Vickers, M.E., Humphreys, C.J., J. Cryst. Growth, in press.Google Scholar
5. Frayssinet, E., Beaumont, B., Faurie, J.P., Gibart, P., Makkai, Zs., Pécz, B., Lefebvre, P., Valvin, P., MRS Internet J. Nitride Semicond. Res. 7 (2002) 8.Google Scholar
6. Larèche, H., Vennéguès, P., Beaumont, B., Gibart, P., J. Cryst. Growth 205 (1999) 245.Google Scholar
7. Tanaka, S., Takeuchi, M., Aoyagi, Y., Jpn. J. Appl. Phys. 39 (2000) L831.Google Scholar
8. Pakuła, K., Bożek, R., Baranowski, J.M., Jasinski, J., Liliental-Weber, Z., J. Cryst. Growth. 267 (2004) 1.Google Scholar
9. Kappers, M.J., Datta, R., Oliver, R.A., Rayment, F.D.G., Vickers, M.E., Humphreys, C.J., J. Cryst. Growth, in press.Google Scholar
10. Wang, H., Chen, C., Gong, Z., Zhang, J., Gaevski, M., Su, M., Yang, J., Khan, M. Asif, Appl. Phys. Lett. 84 (2004) 499.Google Scholar
11. Heying, B., Wu, X.H., Keller, S., Li, Y., Kapolnek, D., Keller, B.P., DenBaars, S.P., Speck, J.S., Appl. Phys. Lett. 68 (1996) 643.Google Scholar