Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T08:38:25.233Z Has data issue: false hasContentIssue false

Ground-Based Space Radiation Effects Studies on Single-Walled Carbon Nanotube Materials

Published online by Cambridge University Press:  01 February 2011

R. Wilkins
Affiliation:
NASA Center for Applied Radiation Research and the Department of Electrical Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
M. X. Pulikkathara
Affiliation:
Department of Mechanical Engineering and Material Science, Rice University, Houston, TX 77005, USA
Valery N. Khabashesku
Affiliation:
Department of Chemistry and Center for Nanoscale Science and Technology, Rice University, Houston, TX, 77005, USA
E. V. Barrera
Affiliation:
Department of Mechanical Engineering and Material Science, Rice University, Houston, TX 77005, USA
Ranji K. Vaidyanathan
Affiliation:
Advanced Ceramics Research, E. Hemisphere Loop, Tucson, AZ 85706, USA
S. A. Thibeault
Affiliation:
NASA Langley Research Center, Hampton, VA 23681–2199, USA
Get access

Abstract

Materials based on carbon nanotubes hold great promise for a variety of applications relevant to space exploration and the aerospace industry. Materials used for these applications will be subject to hostile environments including increased levels of high-energy particulate radiation. The type, energy range and fluence of the radiation will depend on the environment of the space mission. While it is not feasible to conduct an exhaustive study of the effects of space radiation on the earth's surface, ground-based experiments can be designed to simulate expected radiation environments using sources representing components of the relevant radiation environments. In this paper we present a compilation of results on materials based on singlewalled carbon nanotubes (SWNT) emphasizing nano-composites with raw (non-functionalized) and with 2–5% functionalized SWNTs in a polyethylene matrix. Materials such as these are promising candidates for multi-functional materials with good structural and radiation shielding characteristics. The radiation sources discussed here are relevant to the upper atmosphere (high energy neutrons), low earth orbit (medium energy protons) and interplanetary space (high energy protons and heavy ions). The samples are characterized before and after radiation with Raman spectroscopy which gives information on the structure of the SWNT and state of sidewall functionalization. Based on results from the SWNT papers (“buckypapers”) and the composites made from functionalized and non-functionalized SWNT, our data indicates that structural integrity and any sidewall functionalization of the SWNT in the nano-composite are radiation tolerant to radiation fluences commensurate with expected exposures on long-term spaceflight. More importantly, we find that the chemistry and material science of the processes used to produce the pristine and functionalized SWNT can affect the radiation characteristics of the nano-composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cao, Guozhong, Nanostructures an Nanomaterials, Synthesis, Properties and Applications, (Imperial College Press, 2004).Google Scholar
2. Nanoelectronics and Information Technology, edited by Waser, Rainer, (Wiley-VCH, 2003).Google Scholar
3. Yakobson, B. and Smalley, R. E, American Scientist 85, 324 (1997).Google Scholar
4. Saito, R., Dresselhaus, G., Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, (Imperial College Press, 1998).Google Scholar
5. Yu, M.-F., Files, B. S., Arepalli, S., and Ruoff, R. S., Phys. Rev. Lett. 84, 5552 (2000).Google Scholar
6. Hone, J., Liaguno, M. C., Nemes, N. M., Johnson, A. T., Fischer, J. E., Walters, D. A., Casavant, M. J., Schmidt, J., and Smalley, R. E., Appl. Phys. Lett. 77, 666 (2000).Google Scholar
7. Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M. S., Appl. Phys. Lett. 60, 2204 (1993).Google Scholar
8. Barrera, E. V., JOM 52, 38 (2000).Google Scholar
9. Zhu, J., Kim, J., Peng, H., Margrave, J.L., Khabashesku, V.N. and Barrera, E.V., Nano-Letters 3, 1107 (2003).Google Scholar
10. Smith, J. G. Jr, Connell, J. W., Delozier, D.M., Lillehei, P. T., Watson, K.A., Lin, Y., Zhou, B., Sun, Y. –P., Polymer 45, 825 (2004).Google Scholar
11. Barth, J. L., Dyer, C. S., Stassinopoulos, E. G., IEEE Trans. Nucl. Sci. 50, 466 (2003).Google Scholar
12. Shielding Strategies for Human Exploration, edited by Wilson, J. W., Miller, J., Konradi, A. and Cucinotta, F. A. (NASA Conference Publication 3360, 1997).Google Scholar
13. O'Rourke, M., Clayton, L., D'Angelo, D., Harmon, J. P., J. Mater. Res., 17(10) 2002.Google Scholar
14. Klimov, V.V., Letokhov, V.S., Physics Letters A 226 pp. 244252 (1997).Google Scholar
15. Cui, F. Z., Chen, Z. H., Ma, J., Xia, G. R., Zhai, Y., Physics Letters A 295 pp. 5559 (2002).Google Scholar
16. Salonen, E., Krasheninnikov, A.V., Nordlund, K., Nuclear Instruments and Method in Physics Research B 193 pp. 603608 (2002).Google Scholar
17. Khare, B., Meyyappan, M., Moore, M. H., Wilhite, P., Imanaka, H. and Chen, B., Nano-Letters 3, 643 (2003).Google Scholar
18. Krasheninnikov, A. V. and Nordlund, K., Nucl. Instr. Meth. Phys. Res. B 216, 355 (2004).Google Scholar
19. Skakalova, V., Dettlaff-Weglikowska, U. and Roth, S., Diam. and Rel. Mat. 13, 296 (2004).Google Scholar
20. Kis, A., Csanyi, G., Salvetat, J.-P, Lee, T.-N., Couteau, E., Kulik, A. J., Benoit, W., Brugger, J. and Forro, L., Nature Materials 3, 152 (2004).Google Scholar
21. Pulikkathara, M.X., Wilkins, R., Vera, J., Fotedar, L. K., Barrera, E.V., Reece, T. S., Huff, H., Singleterry, R., and Syed, B., “Radiation Effect Risk Analysis and Mitigation of Carbon Nanomaterials and Nanocomposites”, Radiation Protection and Shielding Division Topical Proceedings of the American Nuclear Society Topical Conference, Santa Fe, New Mexico April 2002.Google Scholar
22. Vaidyanathan, R., Green, C., Phillips, T., Barrera, E., Shofner, M., Wilkins, R. and Thiebault, S., Proceedings of the 35th International Society for the Advancement of Material and Process Engineering (SAMPE) Conference, Dayton, OH, October 2003.Google Scholar
23. Pulikkathara, M. X., Shofner, M., Wilkins, R., Vera, J., Barrera, E., Rodriguez-Macias, F., Vaidyanathan, R., Green, C. and Condon, C. in Nanomaterials for Structural Applications, edited by Berndt, C. C., Fischer, T. E., Ovid'ko, I., Skandam, G. and Tsakalakos, T., (Mat. Res. Soc. Symp. Proc. 740, Warrendale, PA, 2003) pp. 365370.Google Scholar
24. Pulikkathara, M. X., Gersey, B. B., Wilkins, R., Barrera, E. V., Vaidyanathan, R. and Thibeault, S. A., 2004 (unpublished).Google Scholar
25. Rinzler, A. G., Liu, J., Dai, H., Nikolaev, P., Huffman, C. B., Rodriguez-Macias, F. J., Boul, P. J., Lu, A. H., Heymann, D., Colbert, D. T., Lee, R. S., Fischer, J. E., Rao, A. M., Eckland, P. C. and Smalley, R. E., Appl. Phys. A 67, 29 (1998).Google Scholar
26. Bronikowski, M., Willis, P. A., Colbert, D. T., Smith, K. A., and Smalley, R. E., J. Vac. Sci. Technol. A 19, 1800 (2001).Google Scholar
27. Khabashesku, V. N., Billups, W. E, and Margrave, J. L., Acc. Chem. Res. 35, 10871095 (2002).Google Scholar
28. Peng, Haiqing, Reverdy, Paul, Khabashesku, Valery N., and Margrave, John L., Chem. Commun. 362363 (2003).Google Scholar
29. Khabashesku, V. N. and Margrave, J. L. in Encyclopedia of Nanoscience and Nanotechnology, Ed. Nalwa, H. S., American Scientific Publishers, Vol. 1, (2004) 849861.Google Scholar
30. Khabashesku, V. N., Billups, W. E, and Margrave, J. L., Acc. Chem. Res. 35, 1087 (2002).Google Scholar
31. Reitz, G., Rad. Prot. Dosimetry 48, 5 (1993).Google Scholar
32. Lisowski, P. A., Bowman, C. D., Russel, G. J. and Wender, S. A., Nucl. Sci. Eng. 106, 208 (1990).Google Scholar
33. Normand, E., Oberg, D. L., Wert, J. L., Ness, J. D., Majewski, P. P., Wender, S., and Gavron, A., IEEE Trans. Nucl. Sci. 41, 2303 (1994).Google Scholar
34. Badhwar, G. D., Huff, H. and Wilkins, R., Radiat. Res. 154, 697 (2000).Google Scholar
37. Agetue, M. J., Pulikkathara, M. X. and Wilkins, R. (unpublished).Google Scholar