Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:35:18.830Z Has data issue: false hasContentIssue false

Graphene-like Membranes: From Impermeable to Selective Sieves

Published online by Cambridge University Press:  29 April 2014

G. Brunetto
Affiliation:
Applied Physics Department, State University of Campinas, 13083-970, Campinas-SP, Brazil.
D. S. Galvao
Affiliation:
Applied Physics Department, State University of Campinas, 13083-970, Campinas-SP, Brazil.
Get access

Abstract

Recently, it was proposed that graphene membranes could act as impermeable atomic structures to standard gases. For some other applications, a higher level of porosity is needed, and the so-called Porous Graphene (PG) and Biphenylene Carbon (BPC) membranes are good candidates to effectively work as selective sieves. In this work we have used classical molecular dynamics simulations to study the dynamics of membrane permeation of He and Ar atoms and possible selectivity effects. For the graphene membranes we did not observe any leakage through the membrane and/or membrane/substrate interface until a critical pressure limit, then a sudden membrane detachment occurs. PG and BPC membranes are not impermeable as graphene ones, but there are significant energy barriers to diffusion depending on the atom type. Our results show that this kind of porous membranes can be effectively used as selective sieves for pure and mixtures of gases.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bunch, J. S. et al. ., Nano Lett. 8, 2458 (2008).CrossRefGoogle Scholar
Koenig, S. P., Wang, L., Pellegrino, J., and Bunch, J. S., Nature Nanotech. 7, 728 (2012).CrossRefGoogle Scholar
Jiang, D.-E., Cooper, V. R., and Dai, S., Nano Lett. 9, 4019 (2009).CrossRefGoogle Scholar
Berry, V., Carbon 62, 1 (2013).CrossRefGoogle Scholar
Lee, C., Wei, X. D., Kysar, J. W., and Hone, J., Science 321, 5887 (2008).Google Scholar
Nair, R. R. et al. ., Science 320, 5881 (2008).CrossRefGoogle Scholar
Balandin, A. A. et al. ., Nano Lett. 3, 902 (2008).CrossRefGoogle Scholar
Bieri, M. et al. ., Chem. Commun. 45, 6919 (2009).CrossRefGoogle Scholar
Brunetto, G., Autreto, P. A. S., Machado, L. D., Santos, B. I., Santos, R., and Galvao, D. S., J. Phys. Chem. C 116, 12810 (2012).CrossRefGoogle Scholar
Baughman, R. H., Eckhardt, H., and Kertesz, M. J., J. Chem. Phys. 87, 6687 (1987).CrossRefGoogle Scholar
Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M., J. Comp. Chem. 4,187 (1983).CrossRefGoogle Scholar
Plimpton, S., J. Comp. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Hauser, A. W., Schrier, J., and Schwerdtfeger, P., J. Phys. Chem. C 116, 10819 (2012).CrossRefGoogle Scholar
Huber, S. E. and Probst, M., Int. J. Mass Spect. – in press .Google Scholar
Stuart, S. J., Tutein, A. B., and Harrison, J. A., J. Chem. Phys. 112, 6472 (2000).CrossRefGoogle Scholar
Koenig, S. P., Boddeti, N. G., Dunn, M. L., and Bunch, J. S., Nature Nanotech. 6, 543 (2011).CrossRefGoogle Scholar