Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:46:50.665Z Has data issue: false hasContentIssue false

Graphene Terahertz Lasers: Injection versus Optical Pumping

Published online by Cambridge University Press:  12 April 2013

Taiichi Otsuji
Affiliation:
RIEC, Tohoku University, Sendai, 980-8577, Japan JST-CREST, Tokyo, 102-0075, Japan
Akira Satou
Affiliation:
RIEC, Tohoku University, Sendai, 980-8577, Japan JST-CREST, Tokyo, 102-0075, Japan
Maxim Ryzhii
Affiliation:
CNEL, University of Aizu, Aizu Wakamatsu, 965-8580, Japan JST-CREST, Tokyo, 102-0075, Japan
Vladimir Mitin
Affiliation:
Dept. EE, University at Buffalo, SUNY, Buffalo, New York 14260-1920, USA
Victor Ryzhii
Affiliation:
RIEC, Tohoku University, Sendai, 980-8577, Japan JST-CREST, Tokyo, 102-0075, Japan
Get access

Abstract

In this paper we demonstrate that graphene is one of the best materials for new types of terahertz lasers as optical and/or injection pumping of graphene can exhibit negative-dynamic conductivity in the terahertz spectral range. We analyze the formation of nonequilibrium states in optically pumped graphene layers and in forward-biased graphene structures with lateral p-i-n junctions and consider the conditions of population inversion and lasing. The latter provides a significant advantage of the injection pumping in realization of graphene terahertz lasers. We benchmark graphene as a prospective material for injection-type terahertz lasers.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tonouchi, M., Nature Photon. 1, 97 (2007).CrossRefGoogle Scholar
Novoselov, K.S, Geim, A.K., Morozov, S.V, Jiang, D, Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Frisov, A.A., Science 306,666 (2004).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A., Nature 438, 197 (2005).CrossRefGoogle Scholar
Kim, P., Zhang, Y., Tan, Y.-W., Stormer, H.L., Nature 438, 201 (2005).Google Scholar
Geim, K. and Novoselov, K. S., Nature Mater. 6, 183 (2007).CrossRefGoogle Scholar
Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A. C., Nature Photon. 4, 611622 (2010).CrossRefGoogle Scholar
Ryzhii, V., Ryzhii, M., and Otsuji, T., J. Appl. Phys. 101, 083114 (2007).CrossRefGoogle Scholar
Ryzhii, M. and Ryzhii, V., Jpn. J. Appl. Phys. 46, L151 (2007).CrossRefGoogle Scholar
Ryzhii, V., Ryzhii, M., Mitin, V., and Otsuji, T., J. Appl. Phys. 110, 094503 (2011).CrossRefGoogle Scholar
Karasawa, H., Komori, T., Watanabe, T., Satou, A., Fukidome, H., Suemitsu, M., Ryzhii, V., and Otsuji, T., J. Infrared Milli. Terahertz Waves 32, 655 (2011).CrossRefGoogle Scholar
Boubanga-Tombet, S., Chan, S., Watanabe, T., Satou, A., Ryzhii, V., and Otsuji, T., Phys. Rev. B 85, 035443 (2012).CrossRefGoogle Scholar
Otsuji, T., Boubanga-Tombet, S., Satou, A., Suemitsu, M., and Ryzii, V., J. Infrared Milli. Terahtz. Waves 33, 825 (2012).CrossRefGoogle Scholar
Otsuji, T., Boubanga Tombet, S. A., Satou, A., Fukidome, H., Suemitsu, M., Sano, E., Popov, V., Ryzhii, M., and Ryzhii, V., J. Phys. D 45, 303001 (2012).CrossRefGoogle Scholar
Dubinov, A. A., Aleshkin, V. Y., Ryzhii, M., Otsuji, T., and Ryzhii, V., Appl. Phys. Express 2, 092301 (2009).CrossRefGoogle Scholar
Ryzhii, V., Ryzhii, M., Satou, A., Otsuji, T., Dubinov, A.A. and Aleshkin, V.Y., J. Appl. Phys. 106, 084507 (2009).CrossRefGoogle Scholar
Ryzhii, V., Dubinov, A., Otsuji, T., Mitin, V., and Shur, M. S., J. Appl. Phys. 107, 054505 (2010).CrossRefGoogle Scholar
Ryzhii, V., Ryzhii, M., Mitin, V., Satou, A., and Otsuji, T., Jpn. J. Appl. Phys. 50, 094001 (2011).CrossRefGoogle Scholar
Satou, A., Otsuji, T., Ryzhii, V., Jpn. J. Appl. Phys. 50, 070116 (2011).CrossRefGoogle Scholar
Satou, A., Boubanga Tombet, S. A., Otsuji, T., and Ryzhii, V., in Dig. OTST: Int. Conf. on Optical Terahertz Science and Technology, OSA, Ed. (2011) p. TuA3.Google Scholar
Suzuura, H. and Ando, T., J. Phys. Soc. Jpn. 77, 044703 (2008).CrossRefGoogle Scholar
Maultzsch, J., Phys. Rev. B 70, 155403 (2004).CrossRefGoogle Scholar
Dawlaty, J.M., Shivaraman, S., Chandrashekhar, M., Rana, F., Spencer, M.G., Appl. Phys. Lett. 92, 042116 (2008).CrossRefGoogle Scholar
George, P. A., Strait, J., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., and Spencer, F. R. M. G., Nano Lett. 8, 4248 (2008).CrossRefGoogle Scholar
Breusing, M., Ropers, C., and Elsaesser, T., Phys. Rev. Lett. 102, 086809 (2009).CrossRefGoogle Scholar
Suzuura, H., Ando, T., “Zone-boundary phonon in graphene and nanotube, ” J. Phys. Soc. Jpn. 77, 044703 (2008).CrossRefGoogle Scholar
Rana, F., George, P. A., Strait, J. H., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., and Spencer, M. G., “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene, ” Phys. Rev. B 79, 115447 (2009).CrossRefGoogle Scholar
de Heera, W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., Martinez, G.d, Solid State Comm. 143, 92 (2007).CrossRefGoogle Scholar
Fukidome, H., Takahashi, R., Abe, S., Imaizumi, K., Handa, H., Kang, H.-C., Karasawa, H., Suemitsu, T., Otsuji, T., Enta, Y., Yoshigoe, A., Teraoka, Y., Kotsugi, M., Ohkouchi, T., Kinoshita, T. and Suemitsu, M., J. Mater. Chem. 21, 17242 (2011).CrossRefGoogle Scholar
Fukidome, H., Abe, S., Takahashi, R., Imaizumi, K., Inomata, S., Handa, H., Saito, E., Enta, Y., Yoshigoe, A., Teraoka, Y., Kotsugi, M., Ohkouchi, T., Kinoshita, T., Ito, S., and Suemitsu, M., Appl. Phys. Express 4, 115104 (2011).CrossRefGoogle Scholar
Ryzhii, V., Ryzhii, M., and Otsuji, T., Appl. Phys. Express 1, 013001 (2008).CrossRefGoogle Scholar
Ryzhii, V., Satou, A. and Otsuji, T., J. Appl. Phys. 101, 024509 (2007).CrossRefGoogle Scholar
Popov, V. V., Bagaeva, T. Yu., Otsuji, T., and Ryzhii, V., Phys. Rev. B 81, 073404 (2010).CrossRefGoogle Scholar
Svintsov, D., Vyurkov, V., Yurchenko, S., Otsuji, T., and Ryzhii, V., J. Appl. Phys. 111, 083715 (2012).CrossRefGoogle Scholar
Fukushima, T., Chan, S., Boubanga Tombet, S., Ryzhii, V., Popov, V., Otsuji, T., in Dig. QNN: International Workshop on Quantum Nanostructure & Nanoelectronics, (2011) p. P-24.Google Scholar
Ju, L., Geng, B., Horng, Jason, Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Ron Shen, Y., and Wang, F., Nature Nanotech. 6, 630 (2011).CrossRefGoogle Scholar
Nikitin, A. Yu., Guinea, F., Garcia-Vidal, F. J., and Martin-Moreno, L., Phys. Rev. B 85, 081405(R) (2012).CrossRefGoogle Scholar
Dubinov, A.A., Aleshkin, Y.V., Mitin, V., Otsuji, T., and Ryzhii, V., J. Phys.: Condens. Matter 23, 145302 (2011).Google Scholar
Takatsuka, Y., Takahagi, K., Sano, E., Ryzhii, V., and Otsuji, T., J. Appl. Phys. 112, 033103 (2012).CrossRefGoogle Scholar
Williams, B.S., Nature Photon. 1, 517 (2007).CrossRefGoogle Scholar
Fathololoumi, S., Dupont, E., Chan, C.W.I., Wasilewski, Z.R., Laframboise, S.R., Ban, D., M´aty´as, A., Jirauschek, C., Hu, Q., and Liu, H. C., Opt. Express 20, 3866 (2012).CrossRefGoogle Scholar
Kumar, S., Chan, C. W. I., Hu, Q., and Reno, J. L., Nature Physics 7, 166 (2011).CrossRefGoogle Scholar
Nishizawa, J. and Suto, K., J. Appl. Phys. 51, 2429 (1980).CrossRefGoogle Scholar
Pavlov, G., Hubers, H.-W., Hovenier, J. N., Klaassen, T. O., Carder, D. A., Phillips, P. J., Redlich, B., Riemann, H., Zhukavin, R. Kh., and Shastin, V. N., Phys. Rev. Lett. 96, 037404 (2006).CrossRefGoogle Scholar
Minamide, H., Ikari, T. and Ito, H., Rev. Sci. Instrum. 80, 123104 (2009).CrossRefGoogle Scholar
Mu, X., Zotova, I.B., and Ding, Y. J., IEEE J. Selected Topics in Quantum Electron. 14, 315 (2008).CrossRefGoogle Scholar
Hebling, J., Almasi, G. and Kozma, I. Z., Opt. Expres 10, 1161 (2002).CrossRefGoogle Scholar
Suizu, K., Shibuya, T., Uchida, H., and Kawase, K., Optics Express 18, 3338 (2010).CrossRefGoogle Scholar
Hirori, H., Doi, A., Blanchard, F., and Tanaka, K., Appl. Phys. Lett. 98, 091106 (2011).CrossRefGoogle Scholar
Nishizawa, J., Tanabe, T., Suto, K., Watanabe, Y., Sasaki, T., and Oyama, Y., IEEE Photon. Technol. Lett. 18, 2008 (2006).CrossRefGoogle Scholar
Ragam, S., Tanabe, T., Saito, K., Oyama, Y., Nishizawa, J., J. Lightwave Technol. 27, 3057 (2009).CrossRefGoogle Scholar
Kiessling, J., Fuchs, F., Buse, K., Breunig, I., Opt. Lett. 36, 4374 (2011).CrossRefGoogle Scholar
Suzuki, S., Asada, M., Teranishi, A., Sugiyama, H., and Yokoyama, H., Appl. Phys. Lett. 97, 242102 (2010).CrossRefGoogle Scholar
Asada, M., Suzuki, S., and Kishimoto, N., Jpn. J. Appl. Phys. 47, 4375 (2008).CrossRefGoogle Scholar