No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
In this work, we establish the use of lithography technique by laser direct writing for fabricating bilayer graphene devices. This technique, which is based on direct laser writing on graphene coated with a photoresist is simple to implement, versatile, and capable of achieving good throughput. Double-layer graphene flakes were obtained by micromechanical cleavage of graphite producing large graphene samples up to 40μm in size. The presence of a bilayer of graphene on SiO2/Si substrate was verified by optical microscopy and resonant Raman spectroscopy. We have measured the four-terminal resistance as a function on the back-gate voltage and found initially p-type doping in graphene, but annealing inside cryostat at 127C° in He atmosphere, the samples become n-type. Our measurements show electron mobility reached values around ˜1,900 cm2/V.s at high electron concentration.