Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T01:12:19.964Z Has data issue: false hasContentIssue false

Graphene and The Advent of Other Layered-2D Materials for Nanoelectronics, Photonics and Related Applications

Published online by Cambridge University Press:  24 June 2013

Anupama B. Kaul*
Affiliation:
Division of Electrical, Communications and Cyber Systems, Engineering Directorate, National Science Foundation, Arlington VA 22203
Get access

Abstract

Carbon-based nanostructures have been the center of intense research and development for more than two decades now. Of these materials, graphene, a two-dimensional (2D) layered material system, has had a significant impact on science and technology in recent years after it was experimentally isolated in single layers in 2004. The recent emergence of other classes of 2D layered systems beyond graphene has added yet more exciting and new dimensions for research and exploration given their diverse and rich spectrum of properties. For example, h-BN a layered material closest in structure to graphene, is an insulator, while NbSe, a transition metal dichalcogenide is metallic and monolayers of other transition metal di-chalcogenides such as MoS2 are direct band-gap semiconductors. The rich variety of properties that 2D layered material systems offer can potentially be engineered on-demand, and creates exciting prospects for their device and technological applications ranging from electronics, sensing, photonics, energy harvesting and flexible electronics in the near future.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

(invited paper)

References

REFERENCES

Avouris, P., Chen, Z., and Perebeinos, V., Nat. Nanotechnol. 2, 605 (2007).CrossRefGoogle Scholar
Cao, Q. and Rogers, J., Adv. Mater 21, 29 (2009).CrossRefGoogle Scholar
Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C., Science 294, 1317 (2001).CrossRefGoogle Scholar
Li, H., Xu, C., Srivastava, N., and Banerjee, K., IEEE Trans. Elect. Dev. 56, 1799 (2009).CrossRefGoogle Scholar
Jeong, H. M., et al. . Nano Lett. 11, 2472 (2011).CrossRefGoogle Scholar
Lu, F., Gu, L., Meziani, M. J., Wang, X., Luo, P. G., Veca, L. M., Cao, L., and Sun, Y. P., Adv. Mater. 21, 139 (2009).CrossRefGoogle Scholar
Kim, K. S., Zhao, Y., et al. . Nature 457, 706 (2009).CrossRefGoogle Scholar
Wei, P., Bao, W., Pu, Y., Lau, C. N., and Shi, J., Phys. Rev. Lett. 102, 166808 (2009).CrossRefGoogle Scholar
Miao, X., Tongay, S., Petterson, M. K., Berke, K., Rinzler, A. G., Appleton, B. R., and Hebard, A. F., Nano Lett. 12, 2745 (2012).CrossRefGoogle Scholar
Dang, X., Yi, H., Ham, M., Qi, J., Yun, D., Ladewski, R., Strano, M. S., Hammond, P. T., and Belcher, A. M., Nature Nano. 6, 377 (2011).CrossRefGoogle Scholar
Homma, Y., Chiashi, S., and Kobayashi, Y., Reports on Progress in Physics 72, 066502 (2009).CrossRefGoogle Scholar
Vakil, A. and Engheta, N., Science 332, 1291 (2011).CrossRefGoogle Scholar
Jang, J. E., Cha, S. N., Choi, Y. J., Kang, D. J., Butler, T. P., Hasko, D. G., Jung, J. E., Kim, J. M., and Amaratunga, G. A. J., Nat. Nanotech. 3, 26 (2008).CrossRefGoogle Scholar
Loh, O. Y. and Espinosa, H. D., Nature Nano. 7, 283 (2012).CrossRefGoogle Scholar
Kaul, A. B., Wong, E. W., Epp, L., and Hunt, B. D., Nano Lett. 6, 942 (2006).CrossRefGoogle Scholar
Kaul, A. B., Khan, A., Bagge, L., Megerian, K. G., LeDuc, H. G., and Epp, L., Appl. Phys. Lett. 95, 093103, (2009).CrossRefGoogle Scholar
Kaul, A. B., Megerian, K., von Allmen, P., Baron, R. L., Nanotechnology 20, 075303 (2009)CrossRefGoogle Scholar
Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., and Ruoff, R. S., Science 287, 637 (2000).CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J. W., and Hone, J., Science 321, 385 (2008).CrossRefGoogle Scholar
Kaul, A. B., Megerian, K. G., Jennings, A., and Greer, J. R., Nanotechnology 21, 315501 (2010).CrossRefGoogle Scholar
Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H., Science 319, 12291232 (2008)CrossRefGoogle Scholar
Balog, R. et al. . Nature Mater. 9, 315319 (2010).CrossRefGoogle Scholar
Zhang, Y. et al. . Nature 459, 820823 (2009).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Wang, X., Zhi, Z., and Mullen, K., Nano Lett. 8, 323 (2009).CrossRefGoogle Scholar
Matyba, P., Yamaguchi, H., Eda, G., Chhowalla, M., Edman, L. and Robinson, N. D., ACS Nano 4, 637 (2010).CrossRefGoogle Scholar
Stoller, M. D., Park, S., Zhu, Y., An, J. and Ruoff, R. S., Nano Lett. 8, 3498 (2008).CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A., Nature Nano 6, 147 (2011).CrossRefGoogle Scholar