Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T05:20:42.721Z Has data issue: false hasContentIssue false

Grain Boundary Structures and Properties in Polycrystalline Silicon

Published online by Cambridge University Press:  15 February 2011

Y.S. Tsuo
Affiliation:
Solar Electric Conversion Research Division, Solar Energy Research Institute, Golden, Colorado 80401
J.B. Milstein
Affiliation:
Solar Electric Conversion Research Division, Solar Energy Research Institute, Golden, Colorado 80401
T. Surek
Affiliation:
Solar Electric Conversion Research Division, Solar Energy Research Institute, Golden, Colorado 80401
Get access

Abstract

The method of preparation of polycrystalline silicon can have a strong influence on the types and distributions of grain boundaries, and thereby influence the electrical properties of devices made from such materials. Examples of methods employed in the preparation of polycrystalline silicon for solar cell applications include directional solidification (Czochralski pulling and various casting techniques), ribbon growth techniques (ribbon-to-ribbon, edgedefined film-fed growth, low-angle silicon sheet growth, edge supported pulling, silicon-on-ceramic), chemical and physical vapor deposition (CVD and PVD) on silicon and foreign substrates, recrystallization techniques (laser, electron beam), and others such as graphoepitaxy and electrodeposition. This paper reviews the important morphological features such as grain size and defect structures of the various polycrystalline silicon materials and the influence of growth parameters on these features. The effects of grain boundaries on the electrical and photovoltaic properties of various polycrystalline silicon materials will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Milstein, J. B., Tsuo, Y. S., Hardy, R. W. and Surek, T., Proc. 15th IEEE Photovoltaic Spec. Conf. P. 1399 (IEEE, New York, 1981).Google Scholar
2. Surek, T., Ariotedjo, A. P., Cheek, G. C., Hardy, R. W., Milstein, J. B. and Tsuo, Y. S., Proc. 15th IEEE Photovoltaic Spec. Conf. P. 1399 (IEEE, New York, 1981), p. 1251. Google Scholar
3. Dumas, K. A., Khattak, C. P. and Schmid, F., Proc. 15th IEEE Photovoltaic Spec. Conf. P. 1399 (IEEE, New York, 1981), p. 954.Google Scholar
4. Roy, K., Rasch, K. D. and Fischer, H., Proc. 14th IEEE Photovoltaic Spec. Conf. p. 897 (IEEE, New York, 1980).Google Scholar
5. Storti, G. M., Ref. 1, p. 108.Google Scholar
6. Inoue, N., Wilmsen, C. W. and Jones, K. A., Solar Cells 3, 35 (1981).CrossRefGoogle Scholar
7. Seidensticker, R. G. J. Cryst. Growth 39, 17 (1977).Google Scholar
8. Rao, C. V. H. N., Cretella, M. C., Wald, F. V. and Ravi, K. V., J. Cryst. Growth 50, 311 (1980).CrossRefGoogle Scholar
9. Surek, T., Hari Rao, C. B., Swartz, J. C. and Garone, L. C., J. Electrochem. Soc. 124, ll2 (1977).CrossRefGoogle Scholar
10. Hari Rao, C. V., Bates, H. E. and Ravi, K. V., J. Appl. Phys. 47, 2614 (1976).Google Scholar
11. Sarma, K. R., Legge, R. N. and Gurtler, R. W., J. Electron. Materials 9, 841 (1980).CrossRefGoogle Scholar
12. Sopori, B. L., J. Electron. Materials 10, 517 (1981).Google Scholar
13. Ciszek, T. F., Schietzelt, M., Kazmerski, L. L., Hurd, J. L. and Fernelius, B., Ref. 1, p. 581.Google Scholar
14. Ciszek, T. F. and Hurd, J. L., p. 213, “Electronic and Optical Properties of Polycrystalline or Impure Semiconductors and Novel Silicon Growth Methods”, Ravi, and O'Mara, , eds., The Electrochem. Soc., Inc., Pennington, N. J. (1980).Google Scholar
15. Jewett, D. N. and Bates, H. E., Ref. 4, p. 1404.Google Scholar
16. Kudo, B., J. Crystal Growth 50, 247 (1980).Google Scholar
17. Tsuya, N., Arai, K. I., Takeuchi, T., Ohmori, K., Ojima, T., Kuroiwa, A., J. Electron. Materials 9, 111 (1980).Google Scholar
18. Schuldt, S. B., Heaps, J. D., Schmit, F. M., Zook, J. D. and Grung, B. L., Ref. 1, p. 934.Google Scholar
19. Rocher, A., Fontaine, C., Oberlin, M., Goma, J., Burggrat, C., Deville, J. P., Aucouturier, M. and Chari, A., Ref. 4, p. 1192.Google Scholar
20. Chu, T. L., J. Cryst. Growth 39, 45 (1977).Google Scholar
21. Robinson, P. H., D'Aiello, R. V., Reichman, D. and Faughnan, B. W., Proc. 13th IEEE Photovoltaic Spec. Conf. p. 1111 (IEEE, New York, 1978); see also,Google Scholar
Secco Daragoma, F., Heminger, D. and Liaw, M., “Effect of Impurity Gettering on the Efficiencies of MGSi Solar Cells”, Electrochemical Society Meeting, Denver, Colorado, Oct. 11–16, 1981.Google Scholar
22. Feldman, C., Arrington, C. H., Blum, N. A. and Satkiewicz, F. G., SERI Subcontract XS–9–8278–1, Final Report, Dec. 1980.Google Scholar
23. Ishiwatari, K., Oka, T. and Akiyama, K., Jap. J. Appl. Phys. 6, 1170 (1967).Google Scholar
24. Chang, C. A. and Siekhaus, W. J., Appl. Phys. Lett. 29, 208 (1976).Google Scholar
25. Ruth, R. P., Simpson, W. I., Yang, J. J., Moudy, L. A. and Johnson, R. E., DOE Contract No. DE–AC03–79ET23045, Final Report, Sept. 1980.Google Scholar
26. Gass, W. R., Witkowski, R. E. and Temofonte, T. A., SERI Subcontract No. XS–9–8119–2, Final Report, Nov. 1981.Google Scholar
27. Mahoney, J. F. and Perel, J., SERI Subcontract No. XS–9–8041–5, Final Report, June 1981.Google Scholar
28. Welsch, G. E., Mooler, H. J. and Heuer, A. H., SERI Subcontract No. HS–9112–1, Final Report, Apr. 1981.Google Scholar
29. Jain, G. C., Das, B. K. and Bhattacherjee, S. P., Appl. Phys. Lett. 33, 445 (1978).CrossRefGoogle Scholar
30. See, for example, Kamins, T. I., J. Electrochem. Soc. 128, 1824 (1981), andCrossRefGoogle Scholar
Shibata, K., Inoue, T., Takigawa, T. and Yoshii, S., Appl. Phys. Lett. 39, 645 (1981).Google Scholar
31. Geis, M. W., Flanders, D. C. and Smith, H. I., Appl. Phys. Lett. 35, 71 (1979).Google Scholar
32. Yang, K., Schwuttke, G. H., and Ciszek, T. F., J. Cryst. Growth 50, 301 (1980).Google Scholar
33. Amelinck, S. and Dekeyser, W., Solid State Phys. 8, 325 (1959).Google Scholar
34. Chadwick, G. A. and Smith, D. A., Editors, “Grain Boundary Structure and Properties”, Academic Press, New York, 1976.Google Scholar
35. Balluffi, R. W., Sass, S. L., and Schober, T., Phil. Mag. 26, 585 (1972).Google Scholar
36. Read, W. T. and Shockley, W., Phys. Rev. 78, 275 (1950).Google Scholar
37. Shockley, W. and Read, W. T., Phys. Rev. 87, 835 (1952).CrossRefGoogle Scholar
38. Strunk, H., Cunningham, B., and Ast, D., p. 297302, “Defects in Semiconductors”, Narayan and Tan, eds., North-Holland, 1981.Google Scholar
39. Seager, C. H. and Ginley, D. S., J. Appl. Phys. 52, 1050 (1981).Google Scholar
40. Krivanek, O. L., Isoda, S., and Kobayashi, K., Phil. Mag. 36, 931 (1977).Google Scholar
41. Fraas, L. and Zanio, K., Chap. 5, “Polycrystalline and Amorphous Thin Films and Devices”, Kazmerski, L. L., ed., Academic Press, N.Y. 1980.Google Scholar
42. Balluffi, R. W., pp. 193237, “Interfacial Segregation”, Johnson, W. C. and Blakely, J. M., eds., American Society for Metals, Metals Park, Ohio, 1977.Google Scholar
43. Fripp, A. L., J. Appl. Phys. 46, 1240 (1975).Google Scholar
44. Mandurah, M. M., Saraswat, K. C., Helms, C. B., and Kamins, T. I., J. Appl. Phys. 51 5755 (1980).Google Scholar
45. Kamins, T. I., J. Electrochem. Soc. 127, 686 (1980).Google Scholar
46. Colinge, J. P., Demoulin, E., Delannay, F., Lobet, M., and Temerson, J. M., J. Electrochem. Soc. 128, 2009 (1981).Google Scholar
47. Monkowski, J. R., Bloem, J., Giling, L. J., and Graef, M. W. M., Appl. Phys. Lett. 35, 410 (1979).Google Scholar
48. Kazmerski, L. L., Ireland, P. J., and Ciszek, T. F., Appl. Phys. Lett. 36, 323 (1980).Google Scholar
49. Helmreich, D. and Ast, G., Ref. 14, p. 233.Google Scholar
50. Swaminathan, B., Demoulin, E., Sigman, T. W., Dutton, R. W., and Reif, R., J. Electrochem. Soc. 127, 2227 (1980).Google Scholar
51. Cheng, L.J. and Shyu, C.M., p. 390, “Semiconductor Silicon,” Huff, and Kriegler, , eds., The Electrochem. Soc. Inc., Pennington, N.J., (1981).Google Scholar
52. Queisser, H. J., Hubner, K., and Shockley, W., Phys. Rev. 123, 1245 (1961).Google Scholar
53. Hwang, J. C M., Ho, P. S., Lewis, J. E., and Campbell, D. R., J. Appl. Phys. 51, 1576 (1980).Google Scholar
54. Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Appl. Phys. Lett. 38, 900 (1981).Google Scholar
55. Neugroschel, A. and Mazer, J. A., IEEE Trans. Electron. Dev., To be published in the February 1982 issue.Google Scholar
56. Wood, R. F., Young, R. T., Westbrook, R. D., Narayan, J., Cleland, J. W., and Christie, W. H., Solar Cells 1, 381 (1980).Google Scholar
57. Chu, T. L., Chu, S. S., Kazmerski, L. L., Whitney, R., Lin, C. L., and Davis, R. M., Solar Cells, Vol. 4, No. 3 (1981).Google Scholar
58. Matare, H. F., SoL Stat. Elect. 22, 651 (1979).Google Scholar
59. Matare, H. F., “Defect Electronics in Semiconductors”, p. 272, Wiley-Interscience, 1971.Google Scholar
60. Seager, C. H., Pike, G. E., and Ginley, D. S., Phys. Rev. Lett. 43, 532 (1979).Google Scholar
61. Seager, C. H. and Pike, G. E., App. Phys. Lett. 35, 709 (1979).Google Scholar
62. Card, H. C. and Yang, E. S., IEEE Trans. Elect. Dev. ED–24, 397 (1977).Google Scholar
63. Ghosh, A. K., Rose, A., Maruska, H. P., Eustace, D. J., and Feng, T., Appl. Phys. Lett. 37, 544 (1980).Google Scholar
64. Wu, C. M. and Yang, E. S., Appl. Phys. Lett. 37, 945 (1980).Google Scholar
65. Robinson, P. H. and D'Aiello, R. V., Appl. Phys. Lett. 39, 63 (1981).Google Scholar
66. Seager, C. H. and Ginley, D. S., reported at SERI Polycrystalline Silicon Contractors' Review Meeting, Alexandria, Virginia, June 17–19, 1981.Google Scholar
67. Ginley, D. S., Haaland, D., and Seager, C. H., “Plasma Modification of Grain Boundaries in Polycrystalline Silicon”, Electrochemical Society Meeting, Denver, Colorado, Oct. ll–16, 1981.Google Scholar