Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T10:02:15.039Z Has data issue: false hasContentIssue false

Grain Boundaries in Crystallized Silicon Thin Films

Published online by Cambridge University Press:  15 February 2011

N. M. Johnson
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
D. K. Biegelsen
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
M. D. Moyer
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Get access

Abstract

The presence of residual grain boundaries in laser-crystallized thin films of silicon necessitates an understanding of their properties and effects on device operation. In CW laser crystallized silicon islands, lateral p-n junction diodes have been used to evaluate the following: (1) enhanced arsenic diffusion along grain boundaries, (2) current-voltage characteristics, and (3) effects of hydrogenation on diode operation. To study the process of hydrogen passivation, deuterium has been used as a readily identifiable isotope which duplicates hydrogen chemistry. From secondary-ion mass spectrometry, diffusion of deuterium in single-crystal and polycrystalline silicon at low temperatures (e.g., 350 C) clearly demonstrates that grain-boundary diffusion dominates bulk diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kamins, T. I. and Pianetta, P. A., IEEE Electron Device Lett. EDL – 1, 214 (1980).CrossRefGoogle Scholar
2. Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Laser and Electron - Beam Solid Interactions and Materials Processing (Elsevier, New York, 1981), eds. Gibbons, J. F., Hess, L. D., and Sigmon, T. W., pp. 463470.Google Scholar
3. Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Insulating Films on Semiconductors (Springer - Verlag, New York, 1981), eds. Schulz, M. and Pensl, G., pp. 234237.CrossRefGoogle Scholar
4. Biegelsen, D. K., Johnson, N. M., Nemanich, R. J., and Moyer, M. D., and Fennell, L. E., Laser and Electron Beam Interactions with Solids (Elsevier, New York, 1982), eds. Appleton, B. R. and Celler, G. K., in press.Google Scholar
5. Hawkins, W. G. and Black, J., Laser and Electron Beam Interactions with Solids (Elsevier, New York, 1982), eds. Appleton, B. R. and Celler, G. K., in press.Google Scholar
6. Tsaur, B. Y., Geis, M. W., Fan, J. C. C., Silversmith, D. J., and Mountain, R. W., Laser and Electron Beam Interactions with Solids (Elsevier, New York, 1982), eds. Appleton, B. R. and Celler, G. K., in press.Google Scholar
7. Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Appl. Phys. Lett. 38, 900 (1981).Google Scholar
8. Biegelsen, D. K., Johnson, N. M., Bartelink, D. J., and Moyer, M. D., Appl. Phys. Lett. 38, 150 (1980).Google Scholar
9. Baumgart, H., Leamy, H. J., Trimble, L. E., Doherty, C. J., and Celler, G. K., these proceedings.Google Scholar
10. Ng, K. K., Celler, G. K., Povilonis, E. I., Frye, R. C., Leamy, H. J., and Sze, S. M., IEEE Electron Device Lett. EDL – 2, 316 (1981).Google Scholar
11. Kamins, T. I. and Von Herzen, B. P., IEEE Electron Device Lett., in press.Google Scholar
12. Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1969), ch. 3.Google Scholar
13. Seager, C. H., Ginley, D. S., and Zook, J. D., Appl. Phys. Lett. 36, 831 (1980).Google Scholar
14. Johnson, N. M., Biegelsen, D. K., Moyer, M. D., Deline, V. R., and Evans, C. A. Jr., Appl. Phys. Lett. 38, 995 (1981).Google Scholar
15. Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., J. Vac. Sci. Technol. 19, 390 (1981).Google Scholar