Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T04:07:22.818Z Has data issue: false hasContentIssue false

Gold Catalysis: Particle Size or Promoting Oxide Morphology?

Published online by Cambridge University Press:  25 July 2011

László Guczi
Affiliation:
Department of Surface Chemistry and Catalysis, Institute of Isotopes, Hungarian Academy of Sciences, P. O. box 77, H-1525 Budapest, Hungary Institute of Nanochemistry and Catalysis, Chemical Research Center, Hungarian Academy of Sciences, P. O. Box 17, H-1525 Budapest, Hungary
Andrea Beck
Affiliation:
Department of Surface Chemistry and Catalysis, Institute of Isotopes, Hungarian Academy of Sciences, P. O. box 77, H-1525 Budapest, Hungary
Tímea Benkó
Affiliation:
Department of Surface Chemistry and Catalysis, Institute of Isotopes, Hungarian Academy of Sciences, P. O. box 77, H-1525 Budapest, Hungary
Zoltán Pászti
Affiliation:
Institute of Nanochemistry and Catalysis, Chemical Research Center, Hungarian Academy of Sciences, P. O. Box 17, H-1525 Budapest, Hungary
Get access

Abstract

Based on results taken from our own experience and the general literature, in the present contribution issues related to the importance of the particle size and morphology in gold catalysis are considered. Although in reactions of small molecules like carbon monoxide nanosized or otherwise nanostructured gold surfaces are the most active catalysts, especially if forming interface with certain oxides, it turns out that in some cases - independently of the interface - the key issue is the available size of extended gold surface dictating the reaction rate. This dilemma is explored in the paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bond, G.C., Thompson, D.T., Gold Bull. 33, 41 (2000)Google Scholar
2. Guczi, L., Beck, A., Frey, K., Gold Bull. 42, 5 (2009)Google Scholar
3. Horváth, A., Beck, A., Sárkány, A., Stefler, G., Varga, Zs., Geszti, O., Tóth, L. and Guczi, L., J. Phys. Chem. B. 110, 15417 (2006)Google Scholar
4. Guczi, L., Pászti, Z., Frey, K., Beck, A., Peto, G., Daróczy, Cs. S., Top. Cat. 39, 137 (2006)Google Scholar
5. Benkó, T., Beck, A., Geszti, O., Katona, R., Guczi, L., Tungler, A., Frey, K., Schay, Z., Appl. Catal. A, 388 (2010) 31 Google Scholar
6. Lambert, R. M., Langmuir lecture, 240th ACS Meeting, 22–26 August, 2010, Boston, USA Google Scholar
7. Guczi, L., Pető, G., Beck, A., Frey, K., Geszti, O., Molnár, G. and Daróczi, C., J. Am. Chem. Soc. 125, 4332 (2003)Google Scholar
8. Pető, G., Molnár, G. L., Pászti, Z., Geszti, O., Beck, A., Guczi, L., Mater. Sci. Eng. C 19, 95 (2002)Google Scholar
9. Pászti, Z., Hakkel, O., Keszthelyi, T., Berkó, A., Balázs, N., Bakó, I. and Guczi, L., Langmuir, 26, 16312, 2010 Google Scholar
10. Hakkel, O., Pászti, Z., Berkó, A., Frey, K., and Guczi, L., Catal. Today, 158 (2010) 63 Google Scholar
11. Ojifinni, R.A., Froemming, N.S., Gong, J., Pan, M., Kim, T.S., White, J.M., Henkelman, G., Mullins, C.B., Am, J.. Chem. Soc. 130, 6801 (2008)Google Scholar
12. Senanayake, S.D., Stacchiola, D., Liu, P., Mullins, C.B., Hrbek, J., Rodriguez, J.A., Phys, J.. Chem. C 113, 19536 (2009)Google Scholar
13. Quinet, E., Piccolo, L., Daly, H., Meunier, F.C., Morfin, F., Valcarcel, A., Diehl, F., Avenier, P., Caps, F., Rousset, J.-L., Catal. Today 138, 43 (2008)Google Scholar
14. Beaumont, S. K., Kyriakou, G., and Lambert, R. M., J. Am. Chem. Soc. 132, 12246 (2010)Google Scholar
15. Kanuru, V.K., Kyriakou, G., Beaumont, S.K., Papageorgiou, A.C., Watson, D.J., and Lambert, R.M., J. Am. Chem. Soc. 132, 8081 (2010)Google Scholar
16. Kyriakou, G., Beaumont, S. K., Humphrey, S. M., Antonetti, C., Lambert, R. M., ChemCatChem, 2, 1444 (2010)Google Scholar