Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T03:16:46.522Z Has data issue: false hasContentIssue false

Glide Mechanisms of <001> Dislocations in NiAl

Published online by Cambridge University Press:  10 February 2011

D. Caillard*
Affiliation:
CEMES-CNRS, BP 4347, 31055 Toulouse Cedex, France
Get access

Abstract

The glide properties of <001> dislocations have been studied by in situ straining experiments at and below room temperature, with the aim of studying slip, cross-slip, Peierls friction forces, and pinning at small obstacles. Most results are in a good agreement with atomistic calculations. It is concluded that unpinning from small extrinsic obstacles is probably the rate controlling mechanism in this temperature range and in the soft orientation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pascoe, R.T., and Newey, C.W., Phys. Stat. Sol. 29, 357 (1971).CrossRefGoogle Scholar
2. Lahrman, D.F., Field, R.D., and Darolia, R., M.R.S. Symp. Proc. 213, 603 (1991).CrossRefGoogle Scholar
3. Kitano, K., and Pollock, T.M., in Structural Intermetallics, ed. By Darolia, R., Lewandowski, J.J., Field, R.D., Miracle, D.B., and Nathal, M.V. (Minerals, Metals and Materials Society), p. 591 (1993).Google Scholar
4. Golberg, D., and Sauthoff, G., Intermetallics 4, 143 (1996).CrossRefGoogle Scholar
5. Farkas, D., Pasianot, R., Savino, E.J., and Miracle, D.B., M.R.S. Symp. Proc. 213, 223 (1991).CrossRefGoogle Scholar
6. Parthasarathy, T.A., Rao, S.I., and Dimiduk, D.M., Phil. Mag. A 67, 643 (1993).CrossRefGoogle Scholar
7. Pasianot, R., Xie, Z., Farkas, D., and Savino, E.J., Modelling Simulation Mater. Sci. Engng. 2, 383 (1994).CrossRefGoogle Scholar
8. Ternes, K., Farkas, D., and Xie, Z., M.R.S. Symp. Proc. 350, 293 (1994).CrossRefGoogle Scholar
9. Schroll, R., Gumbsch, P., and Vitek, V., Mater. Sci. Engng. A 233, 116 (1997).CrossRefGoogle Scholar
10. Vailhé, C., Douin, J., and Caillard, D., M.R.S. Symp. Proc. 460, 455 (1997).CrossRefGoogle Scholar
11. Caillard, D., Vailh, C., and Farkas, D., to appear in Phil. Mag. A.Google Scholar
12. Rao, S., Woodward, C., and Parthasarathy, T., M.R.S. Symp. Proc. 213, 125 (1991).CrossRefGoogle Scholar
13. Zghal, S., Menand, A., and Couret, A., Acta Mater. 46, 5899 (1998).CrossRefGoogle Scholar
14. Messerschmidt, U., Haushdlter, R., and Bartsch, M., Mat. Sci. Engng. A 234–236, 822 (1997).CrossRefGoogle Scholar
15. Takasugi, T., Kishino, J., and Hanada, S., Acta Metall. Mater. 41, 1021 (1993).CrossRefGoogle Scholar
16. Suzuki, T., Takeuchi, S., and Yoshinaga, H., Dislocation Dynamics and Plasticity, Springer Series in Materials Science, vol.12, Springer-Verlag, p. 32 (1991).CrossRefGoogle Scholar