Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T04:16:58.384Z Has data issue: false hasContentIssue false

Glass Formation By Mechanical Alloying

Published online by Cambridge University Press:  26 February 2011

L. Schultz
Affiliation:
Siemens AG, Research Laboratory, D-8520 Erlangen, FRG
E. Hellstern
Affiliation:
Siemens AG, Research Laboratory, D-8520 Erlangen, FRG
Get access

Abstract

Amorphous metallic powders can be formed by mechanical alloying in a high-energy ball mill. Starting from the elemental, crystalline powders, ball milling first produces powder particles with a characteristically layered microstructure. Further milling leads to an ultrafine composite in which amorphization by solid state reaction takes place. The glass-forming range has been determined in detail for Fe-Zr and Ni-Zr. In Fe-Zr it differs completely from rapidly quenched amorphous samples. A systematic study of alloys of 3d transition metals with Zr and Ti shows that the glass-forming ability depends critically on a large negative free enthalpy of mixing. The results lead to the conclusion that amorphization by mechanical alloying is based on a solid state reaction and occurs under a metastable thermodynamic equilibrium neglecting the existence of intermetallic phases. Measurements of the superconducting transition temperature and Möβbauer studies show the structural similarity of mechanically alloyed and rapidly quenched amorphous samples. Finally mechanical alloying of FeZrB and NdFeB is described. Whereas FeZrB becomes amorphous after an additional annealing, a microcrystalline powder with very high coercivity is formed for NdFeB.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Benjamin, J.S., Sci. Amer. 234, 40 (1976).CrossRefGoogle Scholar
2. White, R.L., Ph. D. Thesis, Stanford University, 1979.Google Scholar
3. Koch, C.C., Cavin, O.B., McKamey, C.G., and Scarbrough, J.O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
4. Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
5. Schwarz, R.B., Petrich, R.R., and Saw, C.K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
6. Hellstern, E. and Schultz, L., Appl. Phys. Lett. 48, 124 (1986).CrossRefGoogle Scholar
7. Politis, C. and Johnson, W.L., J. Appl. Phys. 60, 1147 (1986).CrossRefGoogle Scholar
8. Hellstern, E. and Schultz, L., Proc. 6th Int. Conf. on Liquid and Amorphous Metals, Garmisch-Partenkirchen, August 1986 (in print).Google Scholar
9. Schultz, L., Hellstern, E. and Zorn, G., Proc. 6th Int. Conf. on Liquid and Amorphous Metals, Garmisch-Partenkirchen, August 1986 (in print).Google Scholar
10. Politis, C., Proc. 6th Int. Conf. on Liquid and Amorphous Metals, Garmisch-Partenkirchen, August 1986 (in print).Google Scholar
11. Hellstern, E. and Schultz, L., J. Appl. Phys. (submitted).Google Scholar
12. Schultz, L., Proc. MRS Europe Meeting on “Amorphous Metals and Non-Equilibrium Processing”, Strasbourg 1984, ed. Allmen, M.v., p. 135.Google Scholar
13. Schultz, L., these proceedings.Google Scholar
14. Hellstern, E. and Schultz, L., Appl. Phys. Lett. 49 (1986) (in print).CrossRefGoogle Scholar
15. Hellstern, E. and Schultz, L., Proc. 6th Int. Conf. on Liquid and Amorphous Metals, Garmisch-Partenkirchen, August 1986 (in print).Google Scholar
16. Schultz, L., Hellstern, E., and Thomä, A., Europhys. Lett. (submitted).Google Scholar
17. Altounian, Z., Guo-Hua, T., and Strom-Olsen, J.O., J. Appl. Phys. 54, 3111 (1983).CrossRefGoogle Scholar
18. Altounian, Z., Battalla, E., and Strom-Olsen, J.O., J. Appl. Phys. 59, 2364 (1986).CrossRefGoogle Scholar
19. Altounian, Z., Volkert, C.A., and Strom-Olsen, J.O., J. Appl. Phys. 57, 1777 (1985).CrossRefGoogle Scholar
20. Moffat, W.G., Handbook of Binary Phase Diagrams, Genium Publishing Corp., Schenectady (1984).Google Scholar
21. Hellstern, E. and Schultz, L., Proc. 6th Int. Conf. on Liquid and Amorphous Metals, Garmisch-Partenkirchen, August 1986 (in print).Google Scholar
22. Hellstern, E. and Schultz, L., Mater. Sci. Eng. (submitted).Google Scholar
23. Niessen, A.K., de Boer, R.R., Boom, R., de Chatel, P.F., Mattens, C.W.M., and Miedema, A.R., Calphad 7, 51(1983).CrossRefGoogle Scholar
24. Schultz, L., Wecker, J., and Hellstern, E., J. Appl. Phys. (in print).Google Scholar
25. Babić, E., Ristić, R., Miljak, M., Scott, M.G., and Gregan, G., Solid State Comm. 39, 139 (1981).CrossRefGoogle Scholar
26. Altounian, Z. and Strom-Olsen, J.O., Phys. Rev. B 27, 4149 (1983); Z. Altounian, E. Battalla, and J.O. Strom-Olsen, J. Appl. Phys. (in print); Z. Altounian, private communication.CrossRefGoogle Scholar
27. Karkut, M.G. and Hake, R.R., Phys. Rev. B 28, 1396 (1983).CrossRefGoogle Scholar
28. Michaelsen, C. and Hellstern, E., J. Appl. Phys. (submitted).Google Scholar
29. Michaelsen, C., Wagner, H.A., and Freyhardt, H.C., J. Phys. F 16, 109 (1986).CrossRefGoogle Scholar
30. Unruh, K.M. and Chien, C.L., Phys. Rev. B 30, 4968 (1984).CrossRefGoogle Scholar
31. Grütter, P., Diploma Thesis, Univ. of Basel, 1986. 16Google Scholar
32. Croat, J.J., Herbst, J.F., Lee, R.W., and Pinkerton, F.E., Appl. Phys. Lett. 44, 148 (1984).CrossRefGoogle Scholar
33. Schultz, L., Proc. 6th Int. Conf. on Liquid and Amorphous Metals, Garmisch-Partenkirchen, August 1986 (in print).Google Scholar
34. Ermakov, A.E., Yurchikov, E.E., and Barinov, V.A., Fiz. metal. metalloved. 52, 1184 (1981).Google Scholar
35. Ermakov, A.E., Barinov, V.A., and Yurchikov, E.E., Fiz. metal. metalloved. 54, 935 (1982).Google Scholar
36. Schwarz, R.B. and Koch, C.C., Appl. Phys. Lett. 49, 146 (1986).CrossRefGoogle Scholar
37. Weeber, A.W., Bakker, H., and de Boer, F.R., Europhys. Lett. 2, 445 (1986).CrossRefGoogle Scholar
38. Hellstern, E. and Schultz, L. (unpublished).Google Scholar
39. Prümmer, R. and Klemm, W., Proc. Int. Conf. on Powder Metallurgy, Düsseldorf, 1986 (in print).Google Scholar