Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T07:59:42.196Z Has data issue: false hasContentIssue false

Gkowth of YBa2Cu3O7-δ Single Crystals and Films by a Flux and a Sputtering Methods

Published online by Cambridge University Press:  28 February 2011

K. Takagi
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
M. Hirao
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
M. Hiratani
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
H. Kakibayashi
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
T. Aida
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
S. Takayama
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
Get access

Abstract

YBa2Cu3O7-δ single crystals and epitaxial films are grown and characterized. In flux growth for bulk crystals, effects of growth conditions on yield and electric resistivity of crystals are examined. The yield of flaky crystals depends on the formation of cavities. The transition temperature is 86 K after annealing in an oxygen atmosphere. Films are prepared on SrTiO3 by sputtering and epitaxial growth is confirmed by high resolution electron microscopy. Periodic lattice defects are observed near the interface between the substrate and the film. It seems that these defects result from the diffusion of impurities from the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, J.G. and Muller, K.A., Z. Physik B64, 189 (1987).Google Scholar
2. Schneemeyer, L.F., Waszczak, J.V., Siegrist, T., van Dover, R.B., Rupp, L.W., Batlogg, B., Cava, R.J. and Murphy, D.W., Nature 328, 601 (1987).Google Scholar
3. Takei, H., Takeya, H., Iye, Y., Tamegai, T. and Sakai, F., Jpn. J. Appl. Phys. 26, L1425 (1987).Google Scholar
4. Hidaka, Y., Enomoto, Y., Suzuki, M., Oda, M., Katsui, A. and Murakami, T., Jpn. J. Appl. Phys. 26, L720 (1987).Google Scholar
5. Kawasaki, M., Nagata, S., Sato, Y., Funabashi, M., Hasagawa, T., Kishio, K., Kitazawa, K., Fueki, K. and Koinuma, H., Jpn. J. Appl. Phy. 26 L738 (1987).Google Scholar
6. Roth, R.S., Davis, K.L. and Dennis, J.R., Adv. Ceramic Mat. 2, 303 (1987).Google Scholar
7. Enomoto, Y., Murakami, T., Suzuki, M. and Moriwaki, K., Jpn. J. Appl. Phys. 26, L1248 (1987).Google Scholar
8. Shono, Y., Kikuchi, M., Oh-ishi, K., Hiraga, K., Arai, H., Mutui, Y., Kobayashi, N., Sasaoka, T. and Muto, Y., Jpn. J. Appl. Phys. 26, L498 (1987).Google Scholar
9. Ourmazd, A. and Spence, J.C.H., Nature 329, 425 (1987).Google Scholar