Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T20:46:56.892Z Has data issue: false hasContentIssue false

Giant Magnetoresistance of Electrostatic Self-Assembled Fe3O4 Nanocluster and Polymer Thin-Films

Published online by Cambridge University Press:  21 February 2011

Yanjing Liu
Affiliation:
NanoSonic, Inc., P.O. Box 618, Christiansburg, VA 24068
Richard O. Claus
Affiliation:
Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060-0356
Fajian Zhang
Affiliation:
Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060
Get access

Abstract

Giant magnetoresistance (GMR) as large as 25% at 25°C has been observed for multilayer ultrathin films of iron oxide (Fe3O4) nanoclusters and polyimide molecules alternately adsorbed onto single crystal silicon and quartz substrates using a novel self-assembly technique. This process involves the alternate dipping of a substrate into an aqueous solution of anionic polyimide precursor (polyamic salt, PAA) followed by dipping it into an aqueous solution of cationic polydiallyldimethylammonium chloride (PDDA)-coated Fe3O4, nanoparticles. The regular formation of alternating monolayers is verified by UV-vis spectroscopy and contact angle measurements. Vibrating sample magnetometry indicates the formation of ultrasoft films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bonetti, and Fiorani, D., Eds., Nanophase Materials (Trans Tech Publications, 1995), A. Hernando, Ed., Nanomagnetissm (Kluwer Academic Publishers, 1993); R.F. Ziolo, E.P. Giannelis, B.A. Weinstein, M.P. O'Horo, B.N. Ganguly, V. Mehrotra, M.W. Russel and D.R. Huffman, Science, 257, 219 (1992).Google Scholar
2. Audran, R.G.L. and Huguenard, A.P., U.S. Patent 4,302,523 (1981); H.N. Bertram, Theory of Magnetic Recording (Cambridge Univ. Press, 1994); M.H. Kryder, in Applied Magnetism, R. Gerber, C.D. Wright and G. Asti, Eds. (Kluwer Academic Publishers, 1993), vol. 253, chap. 39.Google Scholar
3. Pankhurst, Q.A. and Pollard, R.J., J. Phys.: Condens. Matter 5, 8487 (1993).Google Scholar
4. Anton, I. et al. , J. Magn. Magn. Mater. 111, 29 (1990).Google Scholar
5. Gerber, R., in Applied Magnetism, Gerber, R., Wright, C.D. and Asti, G., Eds. (Kluwer Academic Publishers, 1993), vol. 253, pp. 165.Google Scholar
6. Falicov, L.M. et al. , J. Mater. Res. 5, 1299 (1990).Google Scholar
7. Glavee, G.N., Eason, K., Klabunde, K.J., Sorensen, C.M. and Hadjipanayis, G.C., Chem. Mater. 4, 1360 (1992).Google Scholar
8. Rhyne, J.J., Erwin, R.W., Borchers, J.A., Salamon, M.B., Tsui, F., Du, R. and Flynn, C.P., in Sci. and Tech. of Nanostructured Magnetic Materials, jipanayis, G.C. Had and Prinz, G.A., Eds. (Plenum Press, New York, 1991), pp. 117.Google Scholar
9. Decher, G., Hong, J.D. and Schmitt, J., Thin Solid Films 210/211, 831 (1992 ); M. Ferreira and M.F. Rubner, Macromolecules 28, 7101 (1995).Google Scholar
10. Massart, R., IEEE Trans. Magn. 17, 1247 (1981).Google Scholar
11. Liu, Y., Wang, A. and Claus, R., Appl. Phys. Lett. 71 (16), 2265 (1997).Google Scholar
12. Gardner, S., and Davis, R., in preparation.Google Scholar
13. jipanayis, G.C. Had, Gangopadhyay, S., Sorensen, C.M., and Klabunde, K.J., IEEE Trans. Magn. 29, 2602 (1993).Google Scholar