Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T03:53:34.270Z Has data issue: false hasContentIssue false

Germanium Extremely Heavily Doped by Ion-Implantation and Laser Annealing: A Photoluminescence Study

Published online by Cambridge University Press:  22 February 2011

J. Wagner
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D - 7000 Stuttgart 80, Federal Republic of Germany
G. Contreras*
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D - 7000 Stuttgart 80, Federal Republic of Germany
A. Compaan*
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D - 7000 Stuttgart 80, Federal Republic of Germany
M. Cardona
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D - 7000 Stuttgart 80, Federal Republic of Germany
A. Axmann
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Eckertstr. 4, D - 7800 Freiburg, Federal Republic of Germany
*
+ DAAD Fellow, on leave from E.S.F.M.-I.P.N. México
++ Von Humboldt Foundation Fellow, on leave from Kansas State University, Dept. of Physics, Cardwell Hall, Manhattan, Kansas 66506, U. S. A.
Get access

Abstract

It has been shown previously that dopant concentrations far above the equilibrium solubility limit can be obtained in semiconductors by pulsed laser annealing of heavily ion implanted material. We exploit this fact to study the photoluminescence of germanium with dopant concentrations up to 1021 cm−3. From this study we obtain information on the filling of higher lying band minima and the shift of the optical band gap as a function of carrier concentration over a much wider range than accessible with bulk doped material. In addition it is shown that photoluminescence provides a diagnostic tool to characterize implanted layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.White, C.W., Appleton, B.R., Stritzker, B., Zehner, D.M., and Wilson, S.R., “Laser and Electron-Beam Solid Interactions and Materials Processing” (ed. by Gibbons, J.F., Hess, L.D., Sigmon, T.W., Elsevier North Holland Inc., New York, 1981), p. 59 and references therein.Google Scholar
2.Abram, R.A., Rees, G.J., and Wilson, B.L.H., Adv.Phys. 27, 799 (1978).Google Scholar
3.Benoit, C. à la Guillaume and Cernogora, J., Phys. Stat. Sol. 35, 599 (1968).Google Scholar
4.Hill, C., Butler, A.L., and Daly, J.A., “Laser and Electron-Beam Interactions with Solids” (ed. by Appleton and Celler, North Holland, Amsterdam 1982), p. 579.Google Scholar
5.Contreras, G., Compaan, A., Wagńfer, J., Cardona, M., and Axmann, A., proceedings of the Material Research Society Europe Symposium, Strasbourg,May 1983, edited by Siffert, to appear.Google Scholar
6.Contreras, G., Compaan, A., and Axmann, A., Ref. 5.Google Scholar
7.Mahan, G.D., J. Appl. Phys. 51, 2634 (1980).Google Scholar
8.Berggren, K.F. and Sernelius, B.E., Phys. Rev. B 24, 1971 (1981).Google Scholar
9., Landolt-BörnsteinTables, Vol. 17a, ed. by Madelung, O., Schulz, M., and Weiss, M. (Springer Verlag, Berlin, 1982).Google Scholar