Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T08:11:13.875Z Has data issue: false hasContentIssue false

Germanium Concentration Profiles Across Interfaces And Close To Dislocations In Cvd Si1−xGex-on-Si Junctions.

Published online by Cambridge University Press:  25 February 2011

J. Bruley
Affiliation:
Max-Planck-lnstitut für Metallforschung, 7000 Stuttgart 1, Germany.
F. Ernst
Affiliation:
Max-Planck-lnstitut für Metallforschung, 7000 Stuttgart 1, Germany.
K. Ljutovich
Affiliation:
institute of Electronics, Academy of Sciences, Academgorodok, 700125, USSR
Get access

Abstract

This work concerns a microanalytical study of CVD heteroepitaxial Si1–xGex/Si junctions with x ranging from 0.05 to 0.22. We observe that rather than being chemically abrupt, the width of the interface ranges between 200nm and 2μm with a band of misfit dislocations occupying the same region. Furthermore, the average separation of the dislocations is 2 or 3 times greater than predicted by b/δ considerations. Close scrutiny at individual dislocations within the interface region reveals a local deficit of several hundred Ge atoms per nanometer of dislocation line. It is proposed that the composition profile is rapidly spread by inter-diffusion along dislocations during the deposition process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Arienzo., M., Iyer, S.S., Meyerson, B.S., Patton, G.L. and Stork, , J.M.C.Appl. Surf. Sci. 48: 377, (1991).CrossRefGoogle Scholar
[2] Hull, R. and Bean, , J.C.J. Vac. Sci. Technol. A. 7(4): 2580, (1989).CrossRefGoogle Scholar
[3] Eaglesham, DJ., Kvam, E.P., Maher, D.C., Humphreys, C.J. and Bean, , J.C. Phil. Mag. A. 59(5): 1059, (1989).Google Scholar
[4].Kvam, E.P., Maher, D.M. and Humphreys, , C.P. J. Mater. Res. 5 (9): 1900, (1990).CrossRefGoogle Scholar
[5] LeGoues, F.K., Meyerson, B.S. and Morar, , J.F. Phys. Rev. Letts. 66: 2903, (1991).Google Scholar
[6] Gibbings, C.J., Tuppen, C.G. and Hockley, , M. Appl. Phys. Lett. 54(2): 148, (1989).CrossRefGoogle Scholar
[7] Liou, H.K., Mei, P., Gennser, U. and Yang, , E.S. Appl. Phys. Lett. 59 : 1200, (1991).CrossRefGoogle Scholar
[8] Hofer, , F. Microsc. Microanaly. Microstruct. 2(2/3): 215, (1991).Google Scholar
[9] Panteleev, V.A., Baryshev, R.S., Lainer, L.V., Zinina, A.G. and Pakhutina, , E.F. Sov. Phys. Sol. State. 16: 320, (1974).Google Scholar
[10] Stark, J.P.Solid State Diffusion.” (1976) John Wiley & Sons. New York. Google Scholar
[11].Cottrell, A.H. and Bilby, , B.A.Proc. Phys. Soc. A. 62: 49, (1949).CrossRefGoogle Scholar
[12] Dorner, P., Gust, W., Lodding, A., Odelius, H., Predel, B. and Roll, U., “Diffusion in Metals and Alloys”, Diffusion and Defect Monograph Ser. 7, ed. Kedves, and Beke, , Trans. Tech. Publications, 488 (1983)Google Scholar
[13] Eugène, J., LeGoues, F.K., Kesan, V.P., Iyer, S.S. and d'Heurle, , F.M.Appl. Phys. Lett. 59(1): 78, (1991).Google Scholar