Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T11:03:04.770Z Has data issue: false hasContentIssue false

Geometry Dependent Resistivity in Single-walled Carbon Nanotube Films Patterned Down to Submicron Dimensions

Published online by Cambridge University Press:  01 February 2011

Ashkan Behnam
Affiliation:
[email protected], University of Florida, Electrical and Computer Engineering, 530 ENG BLDG. 33, Gainesville, FL, 32611, United States, 1-352-392-8411
Leila Noriega
Affiliation:
[email protected], University of Florida, Electrical and Computer Engineering, Gainesville, FL, 32611, United States
Yongho Choi
Affiliation:
[email protected], University of Florida, Electrical and Computer Engineering, Gainesville, FL, 32611, United States
Zhuangchun Wu
Affiliation:
[email protected], University of Florida, Physics, Gainesville, FL, 32611, United States
Andrew G Rinzler
Affiliation:
[email protected], University of Florida, Physics, Gainesville, FL, 32611, United States
Ant Ural
Affiliation:
[email protected], University of Florida, Electrical and Computer Engineering, Gainesville, FL, 32611, United States
Get access

Abstract

We demonstrate patterning of SWNT films down to 200 nm lateral dimensions using e-beam lithography and reactive ion etching with good selectivity and directionality and then we fabricate standard four-point-probe structures to characterize the resistivity of these films as a function of device geometry. The resistivity is found to be independent of device length for a given width and thickness, while increasing over three orders of magnitude compared to bulk films, as the width and the thickness of the films shrink. In particular, the resistivity of SWNT films starts to increase with decreasing device width below 20 μm, exhibiting an inverse power law dependence on device width at sub-micron dimensions. We explain this behavior by a purely geometrical argument. Although the “top-down” patterning of nanotube films allows for their use in sub-micron device structures and perhaps their integration into standard silicon fabrication technology, the resistivity scaling is an important effect that needs to be taken into account when fabricating small devices in which nanotube film transport characteristics play a vital role.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dresselhaus, M., Dresselhaus, G., Avouris, Ph., Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, Berlin, 2001).Google Scholar
[2] Liu, J., Fan, S., Dai, H., MRS Bulletin 29, 244 (2004).Google Scholar
[3] Snow, E. S., Novak, J. P., Campbell, P. M., Park, D., Appl. Phys. Lett. 82, 2145 (2003).Google Scholar
[4] Ozel, T., Gaur, A., Rogers, J. A., Shim, M., Nano Lett. 5, 905 (2005).Google Scholar
[5] Siedel, R., Graham, A. P., Unger, E., Duesberg, G. S., Liebau, M., Steinhoegl, W., Kreupl, F., Hoenlein, W., Nano Lett. 4, 831 (2004).Google Scholar
[6] Bradley, K., Gabriel, J. C. P., Gruner, G., Nano Lett. 3, 1353 (2003).Google Scholar
[7] Snow, E. S., Campbell, P. M., Ancona, M. G., Appl. Phys. Lett. 86, 033105 (2005).Google Scholar
[8] Valentini, L., Armentano, I., Kenny, J. M., Cantalini, C., Lozzi, L., Santucci, S., Appl. Phys. Lett. 82, 961 (2003).Google Scholar
[9] Oakley, J. S., Wang, H. T., Kang, B. S., Wu, Z., Ren, F., Rinzler, A. G., Pearton, S. J., Nanotechnol. 16, 2218 (2005).Google Scholar
[10] Lee, K., Wu, Z., Chen, Z., Ren, F., Pearton, S. J., Rinzler, A. G., Nano Lett. 4, 911 (2004).Google Scholar
[11] Pasquier, A. D., Unalan, H. E., Kanwal, A., Miller, S., Chhowalla, M., Appl. Phys. Lett. 87, 203511 (2005).Google Scholar
[12] Meitl, M. A., Zhou, Y., Gaur, A., Jeon, S., Usrey, M. L., Strano, M. S., Rogers, J. A., Nano Lett. 4, 1643 (2004).Google Scholar
[13] Zhou, Y., Hu, L., Gruner, G., Appl. Phys. Lett. 88, 123109 (2006).Google Scholar
[14] Lu, S., Panchapakesan, B., Appl. Phys. Lett. 88, 253107 (2006).Google Scholar
[15] Blanchet, G. B., Subramoney, S., Bailey, R. K., Jaycox, G. D., Appl. Phys. Lett. 85, 828 (2004).Google Scholar
[16] Kumar, S., Murthy, J. Y., Alam, M. A., Phys. Rev. Lett. 95, 066802 (2005).Google Scholar
[17] Bekoyarova, E., Itkis, M. E., Cabrera, N., Zhao, B., Yu, A., Gao, J., Haddon, R. C., J. Am. Chem. Soc. 127, 5990 (2005).Google Scholar
[18] Wu, Z., Chen, Z., Du, X., Logan, J. M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J. R., Tanner, D. B., Hebard, A. F., Rinzler, A. G., Science 305, 1273 (2004).Google Scholar
[19] Behnam, A., Choi, Y., Noriega, L., Wu, Z., Kravchenko, I., Rinzler, A. G., and Ural, A. (unpublished).Google Scholar
[20] Stauffer, D., Introduction to Percolation Theory (Taylor & Francis, London, 1985).Google Scholar