Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T19:01:11.106Z Has data issue: false hasContentIssue false

Generation and Structural Analysis of Silicon Nanoparticles

Published online by Cambridge University Press:  28 February 2011

Ping Li
Affiliation:
University of Hawaii, Department of Physics and Astronomy, Watanabe Hall, 2505 Correa Road, Honolulu, HI 96822.
Klaus Sattler
Affiliation:
University of Hawaii, Department of Physics and Astronomy, Watanabe Hall, 2505 Correa Road, Honolulu, HI 96822.
Get access

Abstract

We have generated 20 to 100 nm sized silicon nanoparticles and analyzed their morphologies using an atomic force microscope (AFM). The particles are formed by deposition of silicon vapor onto silicon wafers and highly oriented pyrolytic graphite (HOPG). On silicon substrates, the particles are close to spherical with relatively narrow size distributions and they are randomly located. On graphite substrates the particles are arranged in chains. Within the chains they show strong deformations in the contact areas. We relate this to covalent inter-particle interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Phillips, J. C., J. Chem. Phys. 88, 2090 (1988)Google Scholar
2 Jelski, D. A., Wu, Z. C., and George, T. F., Chem. Phys. Lett. 150, 447 (1988)Google Scholar
3 Khan, F. S. and Broughton, J. Q., Invited Paper to the 4th International Conference on Supercomputing, Santa Clara, CA 1989 Google Scholar
4 Kupka, H. and Jug, K, Chem. Phys. 130, 23 (1989)Google Scholar
5 Nolte, H. and Jug, K, J. Chem. Phys. 93, 2584 (1990)Google Scholar
6 Chelikowsky, J. R., Glassford, K. M., and Phillips, J. C., Phys. Rev. B 44, 1538 (1991)Google Scholar
7 Kaxiras, E., Phys. Rev. Lett. 64, 551 (1990)Google Scholar
8 Kaxiras, E., Chem. Phys. Lett. 163, 323 (1989)Google Scholar
9 Chelikowsky, J. R., Phillips, J. C., Kanal, M., and Strauss, M., Phys. Rev. Lett. 62, 292 (1989)Google Scholar
10 Tomanek, D. T. and Schluter, M. A., Phys. Rev. B 36, 1208 (1987)Google Scholar
11 Roethlisberger, U., Andreoni, W., and Giannozzi, P., J. Chem. Phys. 96, 1248 (1992)Google Scholar
12 Menon, M. and Subbaswamy, K. R., Phys. Rev. B 47, 12754 (1993)Google Scholar
13 Landau, L. D., in Collected Papers (Pergamon Press, Oxford, 1965), pp.540545 Google Scholar
14 Wilson, J. H., Todd, J. D., and Sutton, A. P., J. Phys. Condens. Matter 2, 10259 (1990); 3, 1971 (E) (1991)Google Scholar
15 Heath, J. R., Science 258, 1131 (1992)Google Scholar
16 Frojtik, A., Weller, H., Fiechter, S., and Henglein, A., Chem. Phys. Lett. 134, 477 (1987)Google Scholar
17 Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A., Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990)Google Scholar
18 DiMaria, D. J., Kirtley, J. R., Pakulis, E. J., Dong, D. W., Kuan, T. S., Pesavento, F. L., Theis, T. N., Cutro, J. A., and Brorson, S. D., J. Appl. Phys. 56, 401 (1984)Google Scholar
19 Sattler, K., Raina, G., Ge, M., Venkateswaran, N., Xhie, J., Liao, Y. X. and Siegel, R. W., J. Appl. Phys. 76, 546 (1994)Google Scholar
20 Morisaki, H., Ping, F. W., Ono, H., and Yazawa, K., J. Appl. Phys. 70, 1869 (1991)Google Scholar
21 Kanemitsu, Y., Ogawa, T., Shiraishi, K. and Takeda, K., Phys. Rev. B 48, 4883 (1993-I)Google Scholar