Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T23:42:53.550Z Has data issue: false hasContentIssue false

Ge Diffusion in SnTe Crystal

Published online by Cambridge University Press:  10 February 2011

O.E. Kaportseva
Affiliation:
Chemistry Department, Moscow State University, Leninskie Gory, Moscow, 119899, Russia, e-mail:[email protected]
L.V. Yashina
Affiliation:
Chemistry Department, Moscow State University, Leninskie Gory, Moscow, 119899, Russia, e-mail:[email protected]
V.B. Bobruiko
Affiliation:
Chemistry Department, Moscow State University, Leninskie Gory, Moscow, 119899, Russia, e-mail:[email protected]
D.V. Safonov
Affiliation:
Chemistry Department, Moscow State University, Leninskie Gory, Moscow, 119899, Russia, e-mail:[email protected]
V.F. Kozlovsky
Affiliation:
Chemistry Department, Moscow State University, Leninskie Gory, Moscow, 119899, Russia, e-mail:[email protected]
V.I. Shtanov
Affiliation:
Chemistry Department, Moscow State University, Leninskie Gory, Moscow, 119899, Russia, e-mail:[email protected]
T.B. Shatalova
Affiliation:
Chemistry Department, Moscow State University, Leninskie Gory, Moscow, 119899, Russia, e-mail:[email protected]
Get access

Abstract

This work is devoted to the study of Ge diffusion in crystalline Sn1-δTe1+8 with δ=0.0065±0.0008 in temperature range T=878-973 K by electron probe microanalysis and layer by layer X-ray analysis. For the latter lattice constant dependence on composition was determined: a(Å)=a(SnTe)-(0.368±0.008)× where 0<×<0. 1. Activation energy was found to be about 1.3 eV, much less than in the case of Ge diffusion in PbTe.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Leute, V., Hornischer, R., Z.fur Physik.Chemie Neue Folge, V.93, N1-6, p.3352(1974).Google Scholar
2. Leute, V., Schmidtke, H., Physik.Chem., V.79, N 10, p.11341140 (1975).Google Scholar
3. Kinoshita, H., Fujiyasu, H., J.Apl.Physics, V.51, N11, p.58455846 (1980).Google Scholar
4. Yashina, L.V., Shatalova, T.B., Bobruiko, V.B., Belyansky, M.P., Zlomanov, V.P., Solid State Ionics, 101–103, p.533538(1997).Google Scholar
5. Abrikosov, N.Kh., Shelimova, L.E., Inoganic Materials, v.22, N7, p.11091114(1986).Google Scholar
6. Kuznetsov, V.L. Inoganic Materials, v.32, N3, p.1261–272 (1996).Google Scholar
7. Brebrick, R.F. J. Phys. Chem. Solids, v.27, 9, p.14951505 (1966).Google Scholar
8. Brebrick, R.F J.Phys.Chem, Solid. v.32, N2, p.551562 (1971)Google Scholar
9. Yashina, L.V., Bobruiko, V.B., Zlomanov, V.P., Belyanskii, M.P., Demovskii, V.I., Molchanov, M.V., Inorganic Materials, v.31, N10, p.12211226 (1995)Google Scholar
10. Miloslavov, S., Ormont, B.F., Isvestiya LETI, 100, v. 100, 7273 (1971)Google Scholar