No CrossRef data available.
Published online by Cambridge University Press: 22 February 2011
TiN films were grown by CVD from Ti(N M e2)4 and ammonia using a novel gas delivery system which allowed the sample to be kept in high vacuum while the reactants were mixed at elevated pressures. The object was to study fundamental chemistries and growth properties. We obtained clean (<5% carbon), near-stoichiometric (Ti:N = 1.15+/-0.1) TiN films. The gas phase chemistry was studied by mass spectrometry while the films were analyzed in situ by Auger electron spectroscopy (AES), and then removed for Rutherford backscattering (RBS) analysis. Film quality was studied as a functionof reactant ratio, substrate temperature, and reactant gas pressure. We obtained definitive information on the growth mechanism. Isotopic substituiton experiments establish that a rapid transami-nation reaction occurs in the gas phase. Mass spectrometry experiments indicate that the reactive intermediate is polymeric, consisting of Ti, N, H, arid perhapscarbon. Growth on patterned wafers shows that this intermediate has a high sticking coefficient and a low surface mobility at 300°C. These findings are considered in terms ofthe potential of this precursor system to be used in manufacturing.