Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T08:16:25.005Z Has data issue: false hasContentIssue false

Functionalized Copolymers and Their Composites with Polylactide And Hydroxyapatite

Published online by Cambridge University Press:  15 February 2011

S. Jin
Affiliation:
Department of Chemistry & Polymer Program at the Institute of Materials Science U- 136, University of Connecticut, Storrs, CT 06269, USA
K. E. Gonsalves
Affiliation:
Department of Chemistry & Polymer Program at the Institute of Materials Science U- 136, University of Connecticut, Storrs, CT 06269, USA
Get access

Abstract

Synthetic copolymers poly(E-caprolactone-co-vinylphosphonic acid) (P(MDOVPA) and poly(E-caprolactone-co-dimethylvinylphosphoester) (P(MDOVPE)) were used to prepare composites with polylactide (PLac) and hydroxyapatite (HAp). The P(MDOVPA) was used as filler in PLac films, as it has pendant functional groups P(O)(OH)2, providing nucleation sites for the deposition of HAp in simulated body fluid. HAp growth on PLac-P(MDOVPA) film was observed by XRD. The incorporation of hydrophilic P(MDOVPE) into PLac increased the hydrophilicity of the blend. Synthetic HAp was also used to make multi-layered, alternating organic-inorganic composites with porous PLac-P(MDOVPE) blends.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Li, P., Ohtsuki, C., Kokubo, T., Nakanishi, K., Soga, N., Nakamura, T. and Yamamuro, T., J. Mater. Sci. Mater. Med. 4, 127 (1993).Google Scholar
2. Mucalo, M. R., Toriyama, M., Yokogawa, Y., Suzuki, T., Kawamoto, Y., Nagata, F. and Nishizawa, K., J. Mater. Sci. Mater. Med. 6, 409 (1995).Google Scholar
3. Glimchere, M. J., in The Chemistry and Biology of Mineralized Conncective Tissues, edited by Veis, A. (Elsevier, Amsterdam, 1981) p. 618.Google Scholar
4. Dallas, E., Kallitsis, J. and Koutsoukos, P. G., Langmuir 7, 1822 (1991).Google Scholar
5. Rawls, H. R., Bartels, T. and Arends, J., J. Colloid. Interface Sci. 87, 339 (1982).Google Scholar
6. Mucalo, M. R., Toriyama, M., Yokogawa, Y., Suzuki, T., Kawamoto, Y., Nagata, F. and Nishizawa, K., J. Mater. Sci. Mater. Med. 6, 597 (1995).Google Scholar
7. Tanahashi, M. and Matsuda, T., J. Biomed. Mater. Res. 34, 305 (1997).Google Scholar
8. Silver, F. H., Biomaterials, MedicalDevices and Tissue Engineering, (Chapman and Hall, New York, 1994), chapter 3.Google Scholar
9. Sarikay, M. and Aksay, I. A., in Structure Cellular Synthesis and Assembly of Biopolymers, edited by Case, S. T. (Springer-Verlag, 1992).Google Scholar
10. Jin, S. and Gonsalves, K. E., Macromolecules 31, 1010 (1998).Google Scholar
11. Zhang, S. and Gonsalves, K. E., J. Mater. Sci. Mater. Medi. 8, 25 (1997).Google Scholar
12. Laurencin, C. T., Amin, S. F., Ibim, S. E., Willoughby, D. A., Attawia, M., Allock, H. R. and Ambrosio, A. A., J. Biomed. Mater. Res. 30, 133 (1996).Google Scholar
13. Tsuru, K., Ohtsuki, C., Osaka, A., Iwamoto, T. and Mackenzie, J. D. (Mater. Res. Soc. Symp. Proc. 435, 1996) p 403.Google Scholar
14. Desai, N. P., Hubbell, J., Biomaterials, 12, 144(1991).Google Scholar
15. Wald, H. L., Mikos, A.G., Sarakinos, G., Lyman, M. D., Vacantiand, J. P. Langer, R., Biomaterials, 14, 270 (1993).Google Scholar
16. Mikos, A. G., Sarakinos, G., Leite, S. M., Vacanti, J. P. and Langer, R., Biomaterials, 14, 353 (1993).Google Scholar
17. Mikos, A. G., Thorsen, A. J., Czerwonka, L. A., Bao, Y., Winslow, D. N., Vacanti, J. P. and Langer, R., Polymer, 35, 1068 (1994).Google Scholar
18. Devin, J. E., Attawiaand, M. A. Laurencin, C. T.. J Biomater. Sci. Polym. Ed. 7, 661 (1996).Google Scholar