Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T03:58:38.524Z Has data issue: false hasContentIssue false

The Function of Buffer Layers and Defects in Heteroepitaxial BaxSr1-xTiO3/YBa2Cu3O7-x/CeO2/Y-ZrO2/Si/Al2O3 Multilayers

Published online by Cambridge University Press:  15 February 2011

E. Olsson
Affiliation:
Department of Physics, Chalmers University of Technology/Göteborg University, S-412 96 GÖTEBORG, Sweden
Yu. Boikov
Affiliation:
Department of Physics, Chalmers University of Technology/Göteborg University, S-412 96 GÖTEBORG, Sweden
Z. G. Ivanov
Affiliation:
Department of Physics, Chalmers University of Technology/Göteborg University, S-412 96 GÖTEBORG, Sweden
A. L. Vasiliev
Affiliation:
Department of Physics, Chalmers University of Technology/Göteborg University, S-412 96 GÖTEBORG, Sweden
T. Claeson
Affiliation:
Department of Physics, Chalmers University of Technology/Göteborg University, S-412 96 GÖTEBORG, Sweden
Get access

Abstract

Different aspects of interfacial interactions during the growth of epitaxial oxides are illustrated in a BaxSr1-xTiO3/YBa2Cu3O7-x/CeO2/Y-ZrO2/Si/Al2O3 heteroepitaxial multilayer. The effect of chemical interaction, interdiffusion, epitaxial strain and thermal strain are exemplified. It is shown how buffer layers can be used to compensate for otherwise detrimental interactions. Considerations necessary for annealing following the film depositions are also addressed. Even if the described structures are specific for this system, similar considerations need to be made for other oxide systems as well. The present description can provide help to identify suitable material combinations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Boikov, Yu., Ivanov, Z.G., Kiselev, A.N., Olsson, E. and Claeson, T., J. Appl. Phys. 78, p. 4591 (1995).Google Scholar
2. Robins, L.H., Kaiser, D.L., Rotter, L.D., Schenck, P.K., Stauf, G.T. and Rytz, D., J. Appl. Phys. 76, p. 7487 (1994).Google Scholar
3. Yano, Y., Iijima, K., Daitoh, Y., Terashima, T., BAndo, Y., Watanabe, Y., Kasatani, H. and Terauchi, H., J. Appl. Phys. 76, p. 7833 (1994).Google Scholar
4. Zhang, J., Chen, Z., Cui, D., Lu, H., Zhou, Y., Li, L., Yang, G., Jiang, N. and Hao, J., Appl. Phys. Lett. 66, p. 2069 (1995).Google Scholar
5. Jia, Q.X., Wu, X.D., Foltyn, S.R. and Tiwari, P., Appl. Phys. Lett. 66, p. 2197 (1995).Google Scholar
6. Qadri, S.B., Horwitz, J.S., Chrisey, D.B., Auyeung, R.C.Y. and Grabowski, K.S., Appl. Phys. Lett. 66, p. 1605 (1995).Google Scholar
7. Fork, D.K., Fenner, D.B., Barton, R.W, Phillips, J.M., Connell, G.A.N., Boyce, J.B. and Geballe, T.H., Appl. Phys. Lett. 57, p. 1161 (1990).Google Scholar
8. Fenner, D.B., Viano, A.M., Fork, D.K., Connell, G.A.N., Boyce, J.B., Ponce, F.A. and Tramontana, J.C., J. Appl. Phys. 69, p. 2176 (1991).Google Scholar
9. Bardal, A., Matthée, Th., Wecker, J. and Samwer, K., J. Appl. Phys. 75, p. 2902 (1994).Google Scholar
10. Prusseit, W., Corsépius, S., Zwerger, M., Berberich, P. and Kinder, H., Physica C 201, p. 249 (1992).Google Scholar
11. Olsson, E., Gupta, A., Thouless, M.D., Segmuiller, A. and Clarke, D.R., Appl. Phys. Lett. 58, p. 1682 (1991).Google Scholar
12. Fork, D.K., Ponce, F.A., Tramontana, J.C., Newman, N., Phillips, J.M., Geballe, T.H., Appl. Phys. Lett. 58, p. 2432 (1991).Google Scholar
13. Copetti, C.A., Soltner, H., Schubert, J., Zander, W., Hollricher, O., Buchal, Ch., Schulz, H., Tellman, N. and Klein, N., Appl. Phys. Lett. 63, p. 1429 (1993).Google Scholar
14. Vasiliev, A.L., Olsson, E., Boikov, Yu., Claeson, T. and Kiselev, N.A., Physica C 253, p. 297 (1995).Google Scholar
15. Fork, D.K., Garrison, S.M., Hawley, M. and Geballe, T.H., J. Mater. Res. 7, p. 1641 (1992).Google Scholar
16. Brorsson, G., Olsson, E., Ivanov, Z.G., Stepantsov, E.A., Alarco, J.A., Boikov, Yu., Claeson, T., Berastegui, P., Langer, V., and Löfgren, M., J. Appl. Phys. 75, p. 7958 (1994).Google Scholar
17. Hwang, D.M., Ying, Q.Y. and Kwok, H.S., Appl. Phys. Lett. 58, p. 2429 (1991).Google Scholar
18. Alarco, J.A., Brorsson, G., Ivanov, Z.G., Nilsson, P.Å., Olsson, E. and Löfgren, M., Appl. Phys. Lett. 61, p. 723 (1992).Google Scholar
19. Alarco, J.A., Brorsson, G., Ivanov, Z.G., Olin, H., Olsson, E. and Claeson, T., J. Appl. Phys. 75, p. 3202 (1994).Google Scholar
20. Olsson, E., “Controlling the structure and properties of High-Tc thin film devices”, chapter in a book entitled “Characterization of high Tc materials and devices by electron microscopy” edited by N., Browning and S.J., Pennycook, Cambridge University Press, to be published.Google Scholar
21. Vasiliev, A.L., Tendeloo, G. Van, Amelinckx, A., Boikov, Yu., Olsson, E. and Ivanov, Z., Physica C 244, p. 373 (1995).Google Scholar
22. Skofronick, G.L., CArim, A.H., Foltyn, S.R. and Muenchausen, R.E., J. Appl. Phys. 76, p. 4753 (1994).Google Scholar
23. Bramley, A.P., Morley, S.M., Grovenor, C.R.M., Pecz, B., Appl. Phys. Lett. 66, p. 517 (1995).Google Scholar
24. Ryen, L. et al. in this proc.Google Scholar
25. Inam, A., Rogers, C.T., Ramesh, R., Remschnig, K., Farrow, L., Hart, D., Venkatesan, T. and Wilkens, B., Appl. Phys. Lett. 57, p. 2848 (1990); R. Ramesh, A. Inam, D.L.Hart and C.T. Rogers, Physica C 170, p. 325 (1990).Google Scholar
26. Char, K., Colclough, M.S., Garrison, S.M., Newman, N. and Zaharchuk, G, Appl. Phys. Lett. 59, p. 733 (1991) 733; K. Char, M.S. Colclough, L.P. Lee and G. Zaharchuk, Appl. Phys. Lett 59, 2177 (1991); S.J. Rosner, K. Char and G. Zaharchuk, Appl. Phys. Lett. 60, p. 1010 (1992) 1010.Google Scholar
28. Lew, D.J., Suzuki, Y., Marshall, A.F., Geballe, T.H. and Beasley, M.R., Appl. Phys. Lett. 65, p. 1584 (1994).Google Scholar