Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:45:16.156Z Has data issue: false hasContentIssue false

Front propagation in laser-tweezed lipid bilayer tubules

Published online by Cambridge University Press:  10 February 2011

Peter D. Olmsted
Affiliation:
Department of Physics, University of Leeds, Leeds, LS2 9JT, United Kingdom
Fred C. Mackintosh
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 18109
Get access

Abstract

We study the mechanism of the ‘pearling’ instability seen recently in experiments on lipid tubules under a local applied laser intensity. We argue that the correct boundary conditions are fixed chemical potentials, or surface tensions Σ, at the laser spot and the reservoir in contact with the tubule. While most qualitative conclusions of previous studies remain the same, the ‘ramped’ control parameter (surface tension) implies several new features. We also explore some consequences of front propagation into a noisy unstable medium.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bar-Ziv, R. and Moses, E., Phys. Rev. Lett. 73 (1994) 1392.Google Scholar
[2] Rayleigh, Lord, Proc. Lond. Math. Soc. 10 (1879) 4; Phil. Mag. 34 (1892) 145.Google Scholar
[3] Tomotika, S., Proc. Roy. Soc. Lond. A150 (1932) 322.Google Scholar
[4] Granek, R. and Olami, Z., J. Phys. II (France) 5 (1995) 1349.Google Scholar
[5] Nelson, P., Powers, T., and Seifert, U., Phys. Rev. Lett. 74 (1995) 3384.Google Scholar
[6] Goldstein, R. E., Nelson, P., Powers, T., and Seifert, U., J. Phys. II (France) 6 (1996) 767.Google Scholar
[7] Schulman, J. H. and Montagne, J. B., Ann. N.Y. Acad. Sci. 92 (1961) 366.Google Scholar
[8] van Sarloos, W., Phys. Rev. A37 (1988) 211.Google Scholar
[9] Kramer, L., Ben-Jacob, E., Brand, H., and Cross, M. C., Phys. Rev. Lett. 49 (1982) 1891;Google Scholar
Kramer, L. and Riecke, H., Z. Phys. B - Cond. Matt. 59 (1985) 245.Google Scholar
[10] Landau, L. D. and Lifschitz, E. M., Fluid Mechanics (Pergamon, Oxford, 1959).Google Scholar
[11] Evans, E. and Needham, D., J. Phys. Chem. 91 (1987) 4219.Google Scholar
[12] Helfrich, W. and Servuss, R.-M., Nuovo Cim. 3D (1984) 137.Google Scholar
[13] Bar-Ziv, R., Frisch, T., and Moses, E., Phys. Rev. Lett. 75 (1995) 3481.Google Scholar
[14] Moses, E., private communucation.Google Scholar
[15] Olmsted, P. D. and MacKintosh, F. C., Journal de Physique to be published (January, 1996).Google Scholar
[16] Goveas, J., Milner, S. T., and Russel, W. B., submitted for publication (1996).Google Scholar