Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-29T05:50:07.265Z Has data issue: false hasContentIssue false

From Hybrid Films to Mesoorganized Multi-metal-oxide Nanocrystalline Films (M3NF), preparation and characterization.

Published online by Cambridge University Press:  01 February 2011

Cédric Boissière
Affiliation:
Chimie de la Matière Condensée, UPMC- CNRS UMR 7574, 4 place Jussieu, 75252 Paris Cedex 05, France
David Grosso
Affiliation:
Chimie de la Matière Condensée, UPMC- CNRS UMR 7574, 4 place Jussieu, 75252 Paris Cedex 05, France
Bernt Smarsly
Affiliation:
Max Planck Institute of Colloids and Interfaces, Research Campus Golm, D-14424 Potsdam, Germany
Torsten Brezesinski
Affiliation:
Max Planck Institute of Colloids and Interfaces, Research Campus Golm, D-14424 Potsdam, Germany
Sophie Lepoutre
Affiliation:
Chimie de la Matière Condensée, UPMC- CNRS UMR 7574, 4 place Jussieu, 75252 Paris Cedex 05, France
Lionel Nicole
Affiliation:
Chimie de la Matière Condensée, UPMC- CNRS UMR 7574, 4 place Jussieu, 75252 Paris Cedex 05, France
J. C. Valle Marcos
Affiliation:
Chimie de la Matière Condensée, UPMC- CNRS UMR 7574, 4 place Jussieu, 75252 Paris Cedex 05, France
Marcus Antonietti
Affiliation:
Max Planck Institute of Colloids and Interfaces, Research Campus Golm, D-14424 Potsdam, Germany
Clément Sanchez
Affiliation:
Chimie de la Matière Condensée, UPMC- CNRS UMR 7574, 4 place Jussieu, 75252 Paris Cedex 05, France
Get access

Abstract

High quality and reproducible thin silica and non-silica mesoporous films were obtained with mono-oriented organised mesoporosity, fitting various symmetry groups (i.e. p6m, Pm3n, Im3m, …). The Evaporation Induced Self Assembly (EISA) mechanism of structuration was studied through in-situ time-resolved SAXS, interferometry and spectroscopic ellipsometry investigations during dip-coating. A Modulable Steady State (MSS) was found during which the system is in quasi-equilibrium with its environment and during which the final structure is formed. The corresponding Self-Assembly mechanism was found to be governed by a competition between evaporation, micellization and condensation that depend on various critical chemical and processing parameters the influence of which have been summarized into directly usable phase diagrams. Calcined SiO2 and TiO2 mesoporous films structure (pore size and anisotropy, porous volume and surface) and mechanical properties (young modulus) were investigated by UV-Visible spectroscopic ellipsometry. Finally, thanks to a specially designed block copolymer, one further step was accomplished by achieving the dip coating and controlled nano-crystallisation of various metallic and multi-metal-oxides films (M3NF) of composition CoxTi(1-x)O(2-x) with ilmenite or doped Anatase structure, and SrTiO3 and MgTa2O6 with perovskite structure. Attending the well known magnetic, dielectric and catalytic properties of these structures, M3NF are highly compatible with high technology applications in microelectronic, energy transfer devices, spintronic, nano-mechanical adjustments, data storage, oxide fuel cells …

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sanchez, C., Soler-Illia, G. J. A. A., Ribot, F., Lalot, T., Mayer, C. R. and Cabuil, V., Chem. Mater., 13, 3061. (2001)Google Scholar
2. (a) Kresge, C. T., Lenowicz, M. F., Roth, W. J., Vartuli, J. C. and Beck, J. S., Nature, 359, 710 (1992);Google Scholar
(b) Soler-Illia, G. J. A. A., Sanchez, C., Lebeau, B. and Patarin, J., Chem. Rev., 102, 4093 (2002).Google Scholar
3. (a) Besson, S., Gacoin, T., Ricolleau, C., Jacquiod, C. and Boilot, J. P., J. Mater. Chem., 13, 404 (2003);Google Scholar
(b) Cagnol, F., Grosso, D., Soler-Illia, G. J. A. A., Crepaldi, E. L., Babonneau, F., Amenitsch, H. and Sanchez, C., J. Mater. Chem., 13, 61 (2003);Google Scholar
(c) Gibaud, A., Grosso, D., Smarsly, B., Baptiste, A., Bardeu, J. F., Babonneau, F., Doshi, D. A., Chen, Z., Brinker, C. J. and Sanchez, C., J. Phys. Chem. B, 107, 6114 (2003);Google Scholar
(d) Doshi, D. A., Gibaud, A., Liu, N., Sturmayr, D., Malanoski, A. P., Dunphy, D. R., Chen, H., Narayan, S., MacPhee, A., Wang, J., Reed, S. T., Hurd, A. J., Van Swol, F. and Brinker, C. J., J. Phys. Chem. B, 107, 7683 (2003);Google Scholar
(e) Innocenzi, P., Falcaro, P., Grosso, D. and Babonneau, F., J. Phys. Chem. B, 107, 4711 (2003).Google Scholar
4. (a) Stein, A., Melde, B. J. and Schroden, R. C., Adv. Mater., 12, 1403 (2000);Google Scholar
(b) Sayari, A. and Hamoudi, S., Chem. Mater., 13, 3151 (2001).Google Scholar
5. Moller, K. and Bein, T., Chem. Mater., 10, 2950 (1998).Google Scholar
6. Brinker, C. J., Lu, Y., Sellinger, A. and Fan, H., Adv. Mater., 11, 579 (1999).Google Scholar
7. Fullerenes: From Synthesis to Optoelectronic Properties, Vol. 4, ed. Guldi, D. M. and Martin, N., Kluwer Academic Publishers, Dordrecht, NL, (2002).Google Scholar
8. Innocenzi, P. and Brusatin, G., Chem. Mater., 13, 3126 (2001).Google Scholar
9. Rachdi, F., Hajji, L., Goze, C., Jones, D. J., Maireles-Torres, P. and Roziere, J., Solid State Commun., 100, 2377 (1996).Google Scholar
10. Huo, et al., Chem. Mater. 6, 1176 (1994)Google Scholar
11. Kresge, C.T., Leoniwicz, M.E., Vartuli, W.J., Beck, J.S., Nature, 359, 710 (1992).Google Scholar
12. a) Galarneau, A., Lerner, D., Ottaviani, M.F., Di-Renzo, F., Fajula, F., Stud. Surf. Sci. Catal., 117, 405 (1998).Google Scholar
b) Frasch, J., Lebeau, B., Soulard, M., Patarin, J., Langmuir, 16, 9049 (2000)Google Scholar
13. Grosso, D., Babonneau, F. et al., Chem. Mater, 2, 931 (2002)Google Scholar
14. Boissiere, C., Larbot, A., Bourgaux, C., Prouzet, E., Bunton, C.A., Chem. Mater, 13, 3580 (2001)Google Scholar
15. Huo, Q., Margolese, D.I., Ciesa, U., Demuth, D.G., Feng, P., Gier, T.E., Sieger, P., Firouzi, A., Chmelka, B.F., Stucky, G.D., Chem. Mater, 6, 1176 (1994)Google Scholar
16. Grosso, D., Cagnol, Florence, Soler-Illia, G.A de A.A., Crepaldi, E., Amenitsch, H., Brunet-Bruneau, A., Bourgeois, A., Sanchez, C., Adv. Funct. Mater, 14, 311 (2004).Google Scholar
17. Crepaldi, E. et al. J. AM. Chem. Soc., 125, 9770 (2003)Google Scholar
18. Crepaldi, E. et al. N. J. Chem., 27, 9 (2003)Google Scholar
19. Crepaldi, E., Grosso, D., Soler-Illia, G.J. de A.A., Albouy, P.A., Amenitsch, H., Sanchez, C., Chem, Mater, 14, 3316 (2002)Google Scholar
20. Grosso, D., Boissiere, C., Smarsly, B., Brezesinski, T., Pinna, N., Albouy, P.A., Amenitsch, H., Antonietti, M., Sanchez, C., Nat. Mater, 3, 787 (2004)Google Scholar
21. Baklanov, M.R., Mogilnikov, K.P., Polovinkin, V.G., Dultsev, F.N., J. Vac. Sci. Technol. B, 18, 3, 13851391 (2000)Google Scholar
22. Mogilnikov, K.P., Baklanov, M.R., Electrochem. And Sol. Stat. Let., 5, 12, F29-F31 (2002)Google Scholar
23. Galarneau, A., Desplantier-Giscard, D., Di-Renzo, F., Fajula, F., Catalysis Today, 68, 191 (2001)Google Scholar