Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T03:23:30.671Z Has data issue: false hasContentIssue false

Free Volume Evolution in Bulk Metallic Glass during High Temperature Creep

Published online by Cambridge University Press:  11 February 2011

B. S. Sundar Daniel
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät, Kiel Universität, Kiel, Germany
Martin Heilmaier
Affiliation:
Institut für Werkstofftechnik und Werkstoffprüfung, Otto-von-Guericke-Universität Magdeburg, Germany
Birgit Bartusch
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Dresden, Germany
Jörn Kanzow
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät, Kiel Universität, Kiel, Germany
Katja Günther-Schade
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät, Kiel Universität, Kiel, Germany
Klaus Rätzke
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät, Kiel Universität, Kiel, Germany
Jürgen Eckert
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Dresden, Germany
Franz Faupel
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät, Kiel Universität, Kiel, Germany
Get access

Abstract

Metallic glasses lack long-range translational symmetry and have excess volume trapped within their amorphous structure, which has a direct bearing on their physical properties including deformation characteristics. Moreover, the trapped excess free volume is directly correlated to the defect concentration facilitating the possibility to model the temperature and time dependence of the free volume changes during creep as a trade off between defect generation and annihilation. Using differential scanning calorimetry (DSC) analysis the residual free volume of a metallic glass can be characterised based on the glass transition peak height (Δcp). In the present work constant strain rate tests were carried out at the ‘onset’ (Tgon = 685 K) and ‘point of inflection’ (Tgp = 705 K) of the calorimetric glass transition to study the time dependent flow behaviour in Zr55Cu30Al10Ni5 bulk metallic glass. Modelling based on DSC analysis and positron lifetime spectroscopy on samples creep deformed to different plastic strain values corroborate the stress decrease after the peak stress (‘stress overshoot’) occurring in bulk metallic glasses with increasing plastic strain to be associated with a small increase in free volume.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Illekova, E., Jergel, M., Kuhnast, F.-A., Mater. Sci. Engg. A278, 27 (2000).Google Scholar
2. Reinker, B., Dopfer, M., Moske, M. and Samwer, K., Eur. Phys. J. B7, 359 (1999).Google Scholar
3. Oligschleger, C., Gaukel, C. and Schober, H. R., J. Non-Cryst. Sol. 250–252, 660 (1999).Google Scholar
4. Van Aken, B., De Hey, P., Sietsma, J., Mater. Sci. & Eng. A278, 247 (2000).Google Scholar
5. Daniel, B. S. S., Reger-Leonhard, A., Heilmaier, M., Eckert, J. and Schultz, L., Mechanics of Time-Dependent Materials 6, 193 (2003).Google Scholar
6. Schermeyer, D. and Neuhäuser, H., Mater. Sci. & Engg. A 226–228 846 (1997).Google Scholar
7. Volkert, C. A. and Spapen, F., Mater. Sci. & Engg. 97, 449 (1988).Google Scholar
8. Busch, R., Bakke, E. and Johnson, W. L., Acta Mater. 46, 4725 (1998).Google Scholar
9. Louzguine, D. V., Inoue, A., Saito, M. and Waseda, Y., Scripta Mater. 42, 289 (2000).Google Scholar
10. Nagel, C., Rätzke, K., Schmidke, E., Wolff, J., Geyer, U. and Faupel, F., Phys. Rev. B57, 10224 (1998).Google Scholar
11. Flores, K. M., Suh, D. and Dauskardt, R. H., J. Mater. Res. 17, 1153 (2003).Google Scholar
12. Taub, A. I., Acta Metall. 28, 633 (1980).Google Scholar
13. Leonhard, A., Xing, L. Q., Heilmaier, M., Gebert, A., Eckert, J. and Schultz, L., NanoStr. Mater. 10, 805 (1998).Google Scholar
14. Reger-Leonhard, A., Heilmaier, M. and Eckert, J., Scripta Mater. 43, 459 (2000).Google Scholar
15. Kirkegaard, P., Eldrup, M., Mogensen, O. E. and Pedersen, N. J., Comp. Phys. Comm., 23 (1981) 307.Google Scholar
16. Cohen, M. H. and Turnbull, D., J. Chem. Phys. 31, 1164 (1959).Google Scholar
17. Spaepen, F., Acta Metall. 25, 407 (1977).Google Scholar
18. Duine, P. A., Sietsma, J. and van den Beukel, A., Acta Metall. Mater. 40, 743 (1992).Google Scholar
19. Fulcher, G. S., J. Amer. Ceram. Soc. 8, 339 (1925).Google Scholar