Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T08:55:50.289Z Has data issue: false hasContentIssue false

Free energies and mechanisms of water exchange around Uranyl from first principles molecular dynamics

Published online by Cambridge University Press:  07 February 2012

Raymond Atta-Fynn
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
Eric J. Bylaska
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
Wibe A. de Jong
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
Get access

Abstract

From density functional theory (DFT) based ab initio (Car-Parrinello) metadynamics, we compute the activation energies and mechanisms of water exchange between the first and second hydration shells of aqueous Uranyl (UO22+) using the primary hydration number of U as the reaction coordinate. The free energy and activation barrier of the water dissociation reaction [UO2(OH2)5]2+(aq) → [UO2(OH2)4]2+(aq) + H2O are 0.7 kcal and 4.7 kcal/mol respectively. The free energy is in good agreement with previous theoretical (-2.7 to +1.2 kcal/mol) and experimental (0.5 to 2.2 kcal/mol) data. The associative reaction [UO2(OH2)5]2+(aq) + H2O → [UO2(OH2)6]2+(aq) is short-lived with a free energy and activation barrier of +7.9 kcal/mol and +8.9 kca/mol respectively; it is therefore classified as associative-interchange. On the basis of the free energy differences and activation barriers, we predict that the dominant exchange mechanism between [UO2(OH2)5]2+(aq) and bulk water is dissociative.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Richens, D. T. The Chemistry of Aqua Ions. Chichester: John Wiley & Sons, 1997.Google Scholar
2. Helm, L.; Merbach, A. E. Chem. Rev. 2005, 105, 1923.Google Scholar
3. Nichols, P.; Bylaska, E. J.; Schenter, G. K.; de Jong, W. A. J. Chem. Phys. 2008, 128, 124507.Google Scholar
4. Neuefeind, J.; Soderholm, L.; Skanthakumar, S. J. Phys. Chem. A 2004, 109, 2733.Google Scholar
5. Soderholm, L.; Skanthakumar, S.; Neuefeind, J. Anal. Bioanal. Chem. 2005, 383, 48.Google Scholar
6. Gutowski, K. E., Dixon, K. E, , D. A. J. Phys. Chem. A 2008, 110, 8840.Google Scholar
7. Spencer, S. et al. . J. Phys. Chem. A 1999, 103, 1831.Google Scholar
8. Hay, P. J. J. Chem. Phys. 1983, 79, 5469.Google Scholar
9. Vallet, V.; Privalov, T.; Wahlgren, U.; Grenthe, I. J. Am. Chem. Soc. 2004, 126, 7766.Google Scholar
10. Bühl, M.; Diss, R.; Wipff, G. J. Am. Chem. Soc. 2005, 127, 13506.Google Scholar
11. Bühl, M.; Kabreden, H. Inorg. Chem. 2006, 45, 3834.Google Scholar
12. Farkas, I.; Bányai, I.; Szabó, Z.; Wahlgren, U.; Grenthe, I. Inorg. Chem. 2000, 39, 799.Google Scholar
13. Laio, A.; Parrinello, M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12562.Google Scholar
14. Laio, A.; Gervasio, F. L. Rep. Prog. Phys. 2008, 71, 126601.Google Scholar
15. Barducci, A.; Bussi, G.; Parrinello, M. Phys. Rev. Lett. 2008, 100, 020603 Google Scholar
16. Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471.Google Scholar
17. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.Google Scholar
18. Valiev, M. et al. . Comput. Phys. Commun. 2010, 181, 1477.Google Scholar
19. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.Google Scholar
20. Kleinman, L.; Bylander, D. M. Phys. Rev. Lett. 1982, 48, 1425.Google Scholar
21. Nose, S. Mol. Phys. 1984, 52, 255; Hoover, W. G. Phys. Rev. A, 1985, 31, 1695.Google Scholar