Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T23:04:38.539Z Has data issue: false hasContentIssue false

Fowler-Nordheim Tunneling Current Oscillation Study of Interface Roughness

Published online by Cambridge University Press:  10 February 2011

L. Lai
Affiliation:
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
E.A. Irene
Affiliation:
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
Get access

Abstract

A decrease in the amplitude of Fowler-Nordheim current oscillations (FN-CO) due to interface roughness is observed for thin film (∼40Å) metal-oxide-semiconductor (MOS) devices, only when the interface has high spatial complexity. Previous studies have shown no measurable changes in FN-CO's resulting from the oxidation of purposely roughened Si surfaces. The present research continues with an FN-CO study using Si surfaces with roughness of higher spatial complexity than the previous studies. The spatial complexity of the purposely roughened Si surfaces was compared using the fractal dimension (DF). Atomic force microscopy (AFM) was used to measure the interface topography, and fractal dimension (DF) was used to describe the surface complexity while root-mean-square (RMS) roughness was used for obtaining vertical information of the roughness. It was found that the oscillation amplitude decrease substantially with an increase of DF but with no dependence on RMS.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Petersson, G. P., Svensson, C. M. and Maserjian, J., Solid-State Electron. 18, 996 (1974).Google Scholar
2 Maserjian, J., The Physics and ChemistryofSiO2 and Si-SiO2 Interface, edited by Helms, C. R. and Deal, B. E. (Plenum New York, 1988), p. 505.Google Scholar
3 Zafar, S., Liu, Q. and Irene, E. A., J. Vac. Sci. Technol. A 13, 47 (1995).10.1116/1.579442Google Scholar
4 Polar, J. C., McKay, K. K. and Irene, E. A., J. Vac. Sci. Technol. B 12, 88 (1994).10.1116/1.587113Google Scholar
5 Zafar, S., Conrad, K. A., Liu, Q., Irene, E. A., Hames, G., Kuehn, R. and Wortman, J. J., Appl. Phys. Lett. 67(7), 1031 (1995).10.1063/1.114720Google Scholar
6 Hebert, K. J., Zafar, S., Irene, E. A., Kuehn, R., McCarthy, T. E. and Demirlioglu, E. K., Appl. Phys. Lett. 68 (2), 266 (1996).10.1063/1.115658Google Scholar
7 Fowler, R. H. and Nordheim, L. W., Proc. R. Soc. London Ser. A 119, 173 (1928).10.1098/rspa.1928.0091Google Scholar
8 Snow, E. H., Solid State Commun. 5, 813 (1967).10.1016/0038-1098(67)90715-6Google Scholar
9 Sune, J., Placencia, I., Farras, E., Barniol, N., and Aymerich, X., Phys. Status Solidi 109, 496 (1988).Google Scholar
10 Irene, E. A., CRC Crit. Rev. Solid State Matter. Sci. 14, 175 (1988).10.1080/10408438808242183Google Scholar
11 Kern, W. and Puotinen, D. A., RCA Rev. 31, 187 (1970).Google Scholar
12 Lenzlinger, M. and Snow, E. H., J. Appl. Phys. 40, 278 (1969).10.1063/1.1657043Google Scholar
13 Alferieff, M. E. and Duke, C. B., J. Chem. Phys. 46, 938 (1967).10.1063/1.1840829Google Scholar
14 Gundlach, K. H., Solid-State Electron. 9, 949 (1966).10.1016/0038-1101(66)90071-2Google Scholar
15 Liu, Q., Spanos, L., Zhao, C., and Irene, E. A., J. Vac. Sci. Technol. A 13(4), 1977 (1995).10.1116/1.579639Google Scholar
16 Spanos, L. and Irene, E. A., J. Vac. Sci. Technol. A 12, 2646 (1994).10.1116/1.579084Google Scholar
17 Spanos, L., Liu, Q., Irene, E. A., Zettler, T., Homung, B., and Wortman, J. J., J. Vac. Sci. Technol. A 12, 2653 (1994).10.1116/1.579085Google Scholar
18 Dubuc, B., Zucker, S. W., Tricot, C., Quiniou, J. F. and Wehbi, D., Proc. R. Soc. London, Ser. A 425, 113 (1989).10.1098/rspa.1989.0101Google Scholar
19 Lewis, T. J., J. Appl. Phys. 26, 1405 (1955).10.1063/1.1721923Google Scholar
20 Lopes, M. C. V., Filho, S. G. dos Santos, Hasenack, C. M. and Baranauskas, V., J. Electrochem. Soc. 143, 1021 (1996).10.1149/1.1836575Google Scholar
21 Adamson, A. W., Physical Chemistry of Surface (Wiley, New York, 1967), p. 58.Google Scholar