Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T04:30:02.296Z Has data issue: false hasContentIssue false

Formation of ZnSe/GaAs Heterovalent Heterostructures by Movpe

Published online by Cambridge University Press:  03 September 2012

Mitsuru Funato
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Kyoto 606-01, Japan
Satoshi Aoki
Affiliation:
Shizυo Fujita
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Kyoto 606-01, Japan
Shigeo Fujita
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Kyoto 606-01, Japan
Get access

Abstract

ZnSe/GaAs (001) heterovalent heteгostructures are fabricated by metalorganic vapor phase epitaxy. During the growth, both GaAs and ZnSe surfaces are kept atomically flat to achieve precise control of the interface formation. Interface composition, Ga/As, are controlled by means of either Zn or Se treatment of a GaAs surface, and then ZnSe growth follows. Consequently, it is revealed by X-ray photoemission spectroscopy (XPS) that artificial control of Ga/As from 1.0 to 2.8 leads to the variation of valence band offsets from 0.6 to 1.1 eV. Based on the electron counting model and layer-attenuation model, it is proposed that the As plane just below the interface consists of As, anti-site Ga and As vacancy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nicolini, R., Vanzetti, L., Mula, G., Bratina, G., Soгba, L., Franciosi, A., Peressi, M., Baroni, S., Resta, R., Baldereschi, A., Angelo, J. E. and Gerrich, W. W., Phys. Rev. Lett. 72, 294 (1994)Google Scholar
2 Kley, A. and Neugebauer, J., Phys. Rev. B 50, 8616 (1994)Google Scholar
3 Dandrea, R. G., Froyen, S. and Zunger, A., Phys. Rev. B 42, 3213 (1990)Google Scholar
4 Kunc, K. and Martin, R. M., Phys. Rev. B 24, 3445 (1981)Google Scholar
5 Bratina, G., Vanzetti, L., Bonanni, A., Soгba, L., Paggel, J. J., Fгanciosi, A., Peluso, T. and Tapfer, L., J. Crystal Growth, 159, 703 (1996)Google Scholar
6 Grant, R. W., Waldrop, J. R., Kowalczyk, S. P. and Kraut, E. A., J. Vac. Sci. Technol. B 3, 1295 (1985)Google Scholar
7 Funato, M., Fujita, Sz. and Fujita, Sg., Jpn. J. Appl. Phys. 33, 4851 (1994)Google Scholar
8 Kamiya, I., Aspnes, D. E., Tanaka, H., Florez, L. T., Harbison, J. P. and Bhat, R., Phys. Rev. Lett., 68, 627 (1992)Google Scholar
9 Reinhardt, F., Richter, W., Müller, A. B., Gutsche, D., Kurpas, P., Ploska, L., Rose, K. C. and Zorn, M., J. Vac. Sci. Technol. B11, 1427 (1993)Google Scholar
10 Funato, M., Aoki, S., Fujita, Sz. and Fujita, Sg., Jpn. J. Appl. Phys. (submitted)Google Scholar
11 Chelluri, B., Chang, T. Y., Ouгmazd, A., Dayem, A. H., Zyskind, J. L. and Srivastava, A., Appl. Phys. Lett., 49, 1665 (1986)Google Scholar
12 Waldrop, J. R., Grant, R. W., Kowalczyk, S. P. and Kraut, E. A., J. Vac. Sci. Technol. A3, 835 (1985)Google Scholar
13 Li, D., Gonsalves, J. M., Otsuka, N., Qiu, J., Kobayashi, M. and Gunshoг, R. L., Appl. Phys. Lett. 57, 449 (1990)Google Scholar
14 Kuo, L. H., Kimura, K., Yasuda, T., Miwa, S., Jin, C. G., Tanaka, K. and Yao, M., Appl. Phys. Lett. 68, 2413 (1996)Google Scholar