Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T13:18:46.181Z Has data issue: false hasContentIssue false

Formation of Titania Submicron-Scale Rod Arrays on Titanium Substrate and In Vitro Biocompatibility

Published online by Cambridge University Press:  01 February 2011

Satoshi Hayakawa
Affiliation:
Biomaterials Laboratory, Okayama University, Tsushima, Okayama, 700-8530, Japan
Yongxing Liu
Affiliation:
Biomaterials Laboratory, Okayama University, Tsushima, Okayama, 700-8530, Japan
Kazuya Okamoto
Affiliation:
Biomaterials Laboratory, Okayama University, Tsushima, Okayama, 700-8530, Japan
Kanji Tsuru
Affiliation:
Biomaterials Laboratory, Okayama University, Tsushima, Okayama, 700-8530, Japan Research Center for Biomedical Engineering, Okayama University, Tsushima, Okayama, 700-8530, Japan
Akiyoshi Osaka
Affiliation:
Biomaterials Laboratory, Okayama University, Tsushima, Okayama, 700-8530, Japan Research Center for Biomedical Engineering, Okayama University, Tsushima, Okayama, 700-8530, Japan
Get access

Abstract

Titania submicron-scale rod arrays were fabricated on metallic titanium (α-Ti) surfaces by coating a layer of sodium tetraborate on titanium substrates and subsequent thermal treatment. Thin-film X-ray diffraction analysis indicated that the sodium tetraborate gave rutile (TiO2: PDF# 21-1276) submicron-scale rod arrays. The rods in the arrays are parallel to each other in the grain of metallic titanium surface. The titania submicron-scale rod arrays deposited apatite within 7 days after being soaked in a simulated body fluid, indicating that the rod arrays exhibit in vitro bioactivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, H-M., Miyaji, F., Kokubo, T. and Nakamura, T., J. Biomed. Mat. Res., 32, 409417 (1996).Google Scholar
2. Ohtsuki, C., Iida, H., Hayakawa, S., Osaka, A., J. Biomed. Mater. Res., 35, 3947 (1997).Google Scholar
3. Kitsugi, T., Nakamura, T., Oka, M., Yan, W-Q., Goto, T., Shibuya, T., Kokubo, T., Miyaji, F., J. Biomed. Mater. Res., 32, 149159 (1996).Google Scholar
4. Kaneko, S., Tsuru, K., Hayakawa, S., Takemoto, S., Ohtsuki, C., Ozaki, T., Inoue, H., Osaka, A., Biomaterials, 22, 875881 (2001).Google Scholar
5. Wang, X-X., Hayakawa, S., Tsuru, K. and Osaka, A., J. Biomed. Mater. Res., 52, 171176 (2000).Google Scholar
6. Wang, X-X., Hayakawa, S., Tsuru, K. and Osaka, A., Biomaterials, 23, pp. 13531357 (2002).Google Scholar
7. Xiao, F., Tsuru, K., Hayakawa, S., and Osaka, A., Thin Solid Films, 441, [1-2], 271276 (2003).Google Scholar
8. Wu, J-M., Xiao, F., Hayakawa, S., Tsuru, K., Takemoto, S., Osaka, A., J. Mater. Sci.: Mater. Med., 14 [12], 10271032 (2003).Google Scholar
9. Liu, Y., Tsuru, K., Hayakawa, S. and Osaka, A., J. Ceram. Soc. Japan, 112 [8], 453458 (2004).Google Scholar
10. Wu, J-M., Hayakawa, S., Tsuru, K., Osaka, A., J. Am. Ceram. Soc., 87 [9], 16351642 (2004).Google Scholar
11. Liu, Y., Tsuru, K., Hayakawa, S. and Osaka, A., J. Ceram. Soc. Japan, 112 [12], 634640 (2004).Google Scholar
12. Kokubo, T., Kushitani, H., Sakka, S. and Yamamuro, T., J. Biomed. Mater. Res. 24, 721734 (1990).Google Scholar
13. Webster, T. J., Ergun, C., Doremus, R. H., Siegel, R. W. and Bizios, R., Biomaterials, 22 [11], 13271333 (2000)Google Scholar