Article contents
Formation of SiGe and SiGeC Layers on Si by Ge and C Ion Implantation and Subsequent Ion-Beam-Induced Epitaxial Crystallization
Published online by Cambridge University Press: 22 February 2011
Abstract
Fabrication of Si1-xGex and Si-1-x-yGexCy layers on Si(100) by high-dose ion implantation of 72Ge ions without and with 12C ions and subsequent high-energy and low-energy ion-beam-induced epitaxial crystallization (IBIEC) has been investigated. Structural properties of the surface layers were observed by RBS-channeling technique. Si(100) wafers were implanted with 150keV and 80keV Ge ions at room temperature so as to produce a peak concentration of Ge amounting to approximately 2 and 14 at.%, respectively. C ions were additionally implanted to a fluence of 10% of Ge concentration for the SiGeC samples. IBΓEC experiments performed with 400keV 18Ar ion bombardments have induced crystallization of the amorphous layers of SiGe and SiGeC on Si up to the surface at 400°C for both samples with low Ge concentration (2%) and high Ge concentration (14%). IBIEC using 72Ge ions with energies whose projected ranges are within the amorphous layer was alternatively performed for SiGe layer on Si. Bombardments of 140keV and 40keV Ge ions at 400°C have induced crystallization up to the surface with a slight disorder in the grown layer. Present experimental results suggest a novel ion beam synthesis method of fabrication of SiGe (SiGeC) on Si at low temperatures.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1994
References
REFERENCES
- 1
- Cited by