Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:56:56.685Z Has data issue: false hasContentIssue false

Formation of Palladium Silicide and Germanide in the Pd/a-Si/Si., Pd/a-Ge/Si, and Pd/a-GeSi/Si Systems During Thermal Treatment

Published online by Cambridge University Press:  26 February 2011

F. Edelman
Affiliation:
Technion-Israel Institute of Technology, Haifa 32000, Israel
C. Cytermann
Affiliation:
Technion-Israel Institute of Technology, Haifa 32000, Israel
R. Brener
Affiliation:
Technion-Israel Institute of Technology, Haifa 32000, Israel
M. Eizenberg
Affiliation:
Technion-Israel Institute of Technology, Haifa 32000, Israel
R. Weil
Affiliation:
Technion-Israel Institute of Technology, Haifa 32000, Israel
W. Beyer
Affiliation:
Institut fur Schicht- und Ionentechnik, KFA Juelich, Germany
Get access

Abstract

X-ray diffraction and transmission electron microscopy have been used to study the kinetics of phase transformations and the structure of Pd/a-Si, Pd/a-Ge and Pd/a-GeSi thin films deposited on Si substrates. Different kinds of amorphouis structures were used: a-Si:H:D, a-Si.:F, a-Ge:H:D, and a-GeSi:H:D. The first stage of phase transformation during heat treatment was palladium silicide (Pd2Si) and palladium germanide (Pd2Ge) formation at temperatures above 200°C. Annealing studies demonstrated that the presence of F in a-Si promotes the Pd2Si formation. The study of the Pd2Si crystallization process showed that: a) when the Pd layer and the a-Si layer are thin, then c-PdSi grows in a fractal-]ike form; b) when the Pd and a-Si both are thick, then c-Pd2Si grows in a globular structure; c) in both above mentioned cases a well-oriented [0011 texture forms. The growth of the silicide and germanide layers in the temperature range of 200-300°C was found to be controlled by a diffusion limited process. It was found that c-Pd2Ge transforms to c-PdGe above 200°C. The a-Ge,.,Si,. 5 alloy behaved similarly to a-Si forming only [001] textured c-Pd2(Ge,Si).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Madan, A. and Shaw, M.P., The Physics and Applications of Amorphous Semiconductors (Academic Press, New York, 1988).Google Scholar
2. Tu, K.N., in “Methods and Materials in Microelectronic Technology” edited by Bargon, J. (Plenum Press, New York, 1984).Google Scholar
3. Nemanich, R.J., Thompson, M.J., Jackson, W.B., Tsai, C.C., and Srafford, B.L., J. of Non-Crystalline Solids, 59/69, 513 (1983).Google Scholar
4. Ottaviani, G., Canali, C., Ferrari, G., Ferrari, R., Majini, G., Prudenziati, M., and Lau, S.S., Thin Solid Films, 47, 187 (1977).Google Scholar
5.Thin Films-Interdiffusion and Reactions” edited by Poate, J.M., Tu, K.N., and Mayer, J.W. (The Electrochem. Soc. Inc., J. Wiley, 1978).Google Scholar
6. Nicolet, A. and Lau, S.S., in VLSI Electronics : Microstructure Science, V.6, edited by Einspruch, N.G. and Larrabe, G.B. (Academic Press, New York, 1983).Google Scholar
7. Murarka, S.P., Silicides for VLSI Applications (Academic Press, New Yorik, 1983).Google Scholar
8. Mayer, J.W. and Lau, S.S., Electronic Materials Science: For Integrated Circuits in Si and GaAs (Macmillan and Collier, New York, London, 1990).Google Scholar
9. Hung, L.S., Kennedy, E.F., Palmstrom, C.J., Olowolafe, J.O., Mayer, J.W., and Rhodes, M., Appl. Phys. Lett. 47., 236 (1985).Google Scholar
10. Cheung, N.W., Nicolet, M.-A., Wittmer, M., Evans, C.A., and Sheng, T.T., Thin Solid Films, 70. 51 (1981).Google Scholar
11. Bower, R.W., Sigurd, D., and Scott, R.E., Solid State Electronics, 16 1461 (1973).Google Scholar
12. Fertig, D.J. and Robinson, G.Y., 19, 407 (1970).Google Scholar
13. Wei, C.S., Spiegel, Van der, and Santiago, J., J. Appl. Phys. 58, 4200 (1985).Google Scholar
14. Jian-Zhong, Duan and Zi-gin, Wu, Solid State Comm. 64, 1 (1987).Google Scholar
15. Jian-Zhong, Duan, Yan, Li, and Zi-gin, Wu, 65. 7 (1988).Google Scholar
16. Hung, L.S., Hong, Q.Z, and Mayer, J.W., J. Appl. Phys. 63, 4651 (1988).Google Scholar
17. Clevenger, L.A., Thompson, C.V., and Tu, K.N., 67, 2894 (1990).Google Scholar
18. Floro, J.A., J. Vac. Sci. Technol. A1, 631 (1986),Google Scholar
19. Cytermann, C., Brener, R., Sacher, E., Pratt, B., and Weil, R., Appl. Phys. Lett. 52, 191 (1988).Google Scholar
20. Janai, M., Weil, R., and Pratt, B., Phys. Rev. B31, 5311 (1985).Google Scholar
21. Losch, W. and Niehus, H., J. of Non-Cryst. Sol. 77/78, 1019 (1985).Google Scholar
22. Wittmer, M., Nicolet, M.-A., and Mayer, J.W., Thin Solid Films, 42, 51 (1977).Google Scholar