Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T08:07:59.503Z Has data issue: false hasContentIssue false

Formation of Intermetallics and Grain Boundary Diffusion in Cu-Al and Au-Al Thin Film Couples*

Published online by Cambridge University Press:  15 February 2011

J. M. Vandenberg
Affiliation:
Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974(U.S.A.)
F. J. A. Den Broeder
Affiliation:
Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974(U.S.A.)
R. A. Hamm
Affiliation:
Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974(U.S.A.)
Get access

Extract

An in situ annealing X-ray study was applied to Cu-Al thin film couples over a wide range of copper-to-aluminum film ratios. This new technique, which has been previously described for a study on the Au-Al thin film system, enables us to make a temperature-dependent photographic X-ray analysis. The present study indicated that only a limited number of the wide variety of bulk phases form in the Cu-Al thin film interface, while some of these phases in the interface are transient. In the transient stages of the interface reaction, the f.c.c.-ordered phase β-Cu3A1 grows over the entire range of copper-to-aluminum film ratios after the first nucleation of CuA12, indicating a two-step nucleation reaction. On the aluminum-rich side, this phase transforms to a new ordered hexagonal phase β′. It could be interpreted as a superlattice of the metastable hexagonal ω phase occurring in zirconium-based alloys. The end phases are CuA1 and CuAl2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Permanent address: Philips Research Laboratories, Eindhoven, The Netherlands.

*

Extended abstract of a paper presented at the Symposium on Thin Films and Interfaces, Boston, MA, U.S.A., November 16–19, 1981.

References

1 Vandenberg, J. M. and Hamm, R. A., J. Vac. Sci. Technol., 19 (1981) 84.CrossRefGoogle Scholar
2 Vandenberg, J. M. and Hamm, R. A., Thin Solid Films, to be published.Google Scholar
3 den Broeder, F. J. A., Vandenberg, J. M. and Klerk, M., Acta Metall., to be published.Google Scholar
4 den Broeder, F. J. A., Acta Metall., 20 (1972) 319.Google Scholar
5 Cahn, J. W., Pan, J. D. and Baluffi, R. W., Scr. Metall., 13 (1979) 503.Google Scholar
6 Hansen, M. and Anderko, K. A., Constitution of Binary Alloys, McGraw-Hill, London, 1958.Google Scholar
7 Tousek, J., Kokove Mater., 12 (1974) 561;Google Scholar
Diffus. Data, 12 (1976) 25.Google Scholar
8 Tu, K. N., J. Appl. Phys., 48(1977) 3400.Google Scholar
9 Hillert, M. and Purdy, G., Acta Metall., 26 (1978) 333.Google Scholar
10 Baluffi, R. W. and Cahn, J. W., Acta Metall., 29 (1981) 493.Google Scholar
11 Smith, D. A. and King, A. H., Philos. Mag. A, 44 (1981) 333.CrossRefGoogle Scholar
12 Matthews, J. W. and Jesser, W. A., J. Vac. Sci. Technol., 6 (1969) 641.Google Scholar
13 Matthews, J. W., Thin Solid Films, 25 (1975) 199.Google Scholar
14 Mittemeijer, E. J. and Beers, A. M., Thin Solid Films, 65 (1980) 125.Google Scholar
15 den Broeder, F. J. A. and Nakahara, S., to be published.Google Scholar
16 Matsuno, N. and Oikawa, H., Metall. Trans., A, 6 (1975) 2191.Google Scholar