Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T22:06:38.169Z Has data issue: false hasContentIssue false

Formation of Hydrogen-passivated Silicon Nanochains by Pulsed Laser Ablation without Thermal Annealing

Published online by Cambridge University Press:  01 February 2011

Mitsuru Inada
Affiliation:
National Institute of Information and Communications Technology, Kobe 651–2492, Japan
Ikurou Umezu
Affiliation:
National Institute of Information and Communications Technology, Kobe 651–2492, Japan
Shukichi Tanaka
Affiliation:
National Institute of Information and Communications Technology, Kobe 651–2492, Japan
Shinro Mashiko
Affiliation:
National Institute of Information and Communications Technology, Kobe 651–2492, Japan
Akira Sugimura
Affiliation:
Department of Physics, Konan University, Kobe 658–8501, Japan
Get access

Abstract

Hydrogen-passivated silicon nanochains were synthesized by pulsed laser ablation of silicon target in hydrogen gas atmosphere at room temperature. When the hydrogen gas pressure was higher than 670Pa, nanochains, which have crystalline silicon core, were formed. Transmission electron microscopy showed the silicon nanochains consist of connections of silicon nanocrystals with mean diameter of 4.6 nm. It is of great interest that the silicon nanochain has crystalline structure without any intentional annealing process. Optical properties of the hydrogen-passivated silicon nanochains were presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Lockwood, D. J., “Light Emission in Silicon From Physics to Devices” ed. by Lockwood, D. J. (Academic Press, San Diego 1998).Google Scholar
3. Werwa, E., Seraphin, A. A., Chiu, L. A., Zhou, C., Kolenbrander, K. D., App. Phys. Lett. 64, 1821 (1994).Google Scholar
4. Yamada, Y., Orii, T., Umezu, I., Takeyama, S. and Yoshida, T., Jpn. J. Appl. Phys. 35, 1361 (1996).Google Scholar
5. Inada, M., Umezu, I. and Sugimura, A., J. Vac. Sci. Technol. A 21, 84 (2003)Google Scholar
6. Inada, M., Nakagawa, H., Umezu, I. and Sugimura, A., Meterials Science and Engineering B 101, 283 (2003)Google Scholar
7. Umezu, I., Matsumoto, K., Inada, M., Makino, T. and Sugimura, A., Appl. Phys. A 79, 1545 (2004).Google Scholar
8. Campbell, I. H. and Fauchet, P. M., Solid State Commun. 58, 739 (1986).Google Scholar
9. Piscanec, S., Cantoro, M., Ferrari, A. C., Zapien, J. A., Lifshitz, Y., Lee, S. T., Hofmann, S. and Robertson, J., Phys. Rev. B 68, 241312 (2003).Google Scholar
10. Withrow, S. P., While, C. W., Meldrum, A., Budai, J. D., Hembree, D. M. Jr, Barbour, J. C., J. Appl. Phys. 86, 396 (1999).Google Scholar