Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:38:10.523Z Has data issue: false hasContentIssue false

Formation of Ferromagnetic FePt Nanoparticles by Ion Implantation

Published online by Cambridge University Press:  17 March 2011

C. W. White
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
S. P. Withrow
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
J. D. Budai
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
L. A. Boatner
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
K. D. Sorge
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
J. R. Thompson
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
K. S. Beaty
Affiliation:
The University of Alberta, Edmonton, Alberta, Canada
A. Meldrum
Affiliation:
The University of Alberta, Edmonton, Alberta, Canada
Get access

Abstract

Oriented ferromagnetic FePt nanoparticles with the face-centered tetragonal L10 structure were produced in Al2O3 single crystal hosts by ion implantation and annealing. Both the orientation and particle-size of the FePt particles depend strongly on the implantation conditions. The magnetic coercivities are extremely high, reaching values in excess of 20 kOe for Pt concentrations of ∼45% in the FePt alloy. Ferromagnetic FePt nanoparticles were also produced in amorphous SiO2 by ion implantation and annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weller, D., Moser, A., Folks, L., Best, M. E., Lee, W., Toney, M. F., Schwickert, M., Thiele, J.-U., and Doerner, M. F., IEEE Trans. on Magnetics 36, 10 (2000).Google Scholar
2. Sun, S., Murray, C. B., Weller, D., Folks, L., and Moser, A., Science 287, 1989 (2000). See also IEEE Trans. on Magnetics 37, 1239 (2001).Google Scholar
3. Watanabe, M., Masumoto, T., Pink, D. H., and Hono, K., Appl. Phys. Lett. 76, 3971 (2000).Google Scholar
4. Bain, B., Laughlin, D., Sato, K., and Hirotsu, Y., J. Appl. Phys. 87, 6962 (2000).Google Scholar
5. Luo, C. P. and Sellmyer, D. J., Appl. Phys. Lett. 75, 3162 (1999).Google Scholar
6. Luo, C. P., Liou, S. H., Gao, L., Liu, Y., and Sellmyer, D. J., Appl. Phys. Lett. 77, 2225 (2000).Google Scholar
7. Kuo, C.-M. and Kuo, P. C., J. Appl. Phys. 87, 419 (2000).Google Scholar
8. White, C. W., Withrow, S. P., Budai, J. D., Boatner, L. A., Sorge, K. D., Thompson, J. R., Beaty, K. S., and Meldrum, A., Nucl. Inst. and Methods B (in press).Google Scholar
9. Panagiotopoulos, I., Stavroyiannis, S., Niachos, D., Christodoulides, J. A., and Hadjipanayis, G. C., J. Appl. Phys. 87, 4358 (2000).Google Scholar
10. Goto, T., Ide, Y., Abe, H., Watanabe, K., Onagawa, J., Yoshida, H., and Cadogan, J. M., J. Mag. and Mag. Materials 198–199, 486 (1999).Google Scholar