Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T05:02:42.242Z Has data issue: false hasContentIssue false

Formation of Carbon Nanotube by using RF plasma CVD equipment from Acetylene and Hydrogen gases

Published online by Cambridge University Press:  15 March 2011

Y. Show
Affiliation:
Department of Electronics, Faculty of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, JAPAN
T. Matsukawa
Affiliation:
Department of Electronics, Faculty of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, JAPAN
M. Iwase
Affiliation:
Department of Electrical Engineering, Faculty of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, JAPAN
T. Izumi
Affiliation:
Department of Electronics, Faculty of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, JAPAN
Get access

Abstract

The carbon nanotubes were grown on the round Ni particles at the growth temperature below 60 °C by the radio frequency plasma CVD equipment from the acetylene and the hydrogen gases. For the low growth of the carbon nanotubes, the acetylene concentration in the hydrogen gas was essential parameter. In the case of the high acetylene concentration above 30 %, the cauliflower-like carbon film was grown. On the other hand, the low acetylene concentration of 10 % realized the low temperature growth of the carbon nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Saito, Y., Hamaguchi, K., Nishino, T., Hata, K., Tohji, K., Kasuya, A. and Nishina, Y., Jpn. J. Appl. Phys., Part 2 36, K1340 (1997)Google Scholar
[2] Bonard, J.-M., Salvetat, J. -P., Stochli, T., Heer, W. A. de, Forro, L. and Chatelain, A., Appl. Phys. Lett. 73, 918 (1998)Google Scholar
[3] Saito, Y., Uemura, S. and Hamaguchi, K., Jpn. J. Appl. Phys., Part 2 37, L346 (1998)Google Scholar
[4] Wang, Q. H., Setlur, A. A., Lauerhaas, J. M., Dai, J. Y., Seelig, E. W. and Chang, R. P. H., Appl. Phys. Lett. 72, 2912 (1998)Google Scholar
[5] Murakami, H., Hirakawa, M., Tanaka, C. and Yamakawa, H., Appl. Phys. Lett. 76, 1776 (2000)Google Scholar
[6] Bower, C., Zhou, O., Zhu, W., Werder, D. J. and Jin, S., Appl. Phys. Lett. 77, 2767 (2000)Google Scholar
[7] Yudasaka, M., Kikuchi, R., Matsui, T., Ohki, Y., Yoshimura, S. and Ota, E., Appl. Phys. Lett. 67, 2477 (1995)Google Scholar
[8] Yudasaka, M., Kikuchi, R., Ohki, Y., Ota, E. and Yoshimura, S., Appl. Phys. Lett. 70, 1817 (1997)Google Scholar
[9] Choi, Y. C., Shin, Y. M., Lee, Y. H., Lee, B. S., Park, G., Choi, W. B., Lee, N. S. and Kim, J. M., Appli, Phys. Lett. 76, 2367 (2000)Google Scholar