No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
A Ni-based amorphous alloy in Ni60Ti20Zr20 system was prepared by melting spinning. The glass transition temperature (Tg) was as high as about 760 K, the supercooled liquid region was quite wide, ΔTx = 50 K (ΔTx= Tx-Tg, Tx crystallization temperature), and the reduced glass transition temperature (Tg/Tm) was 0.60. The amorphous alloys exhibited a high tensile strength (of= 1015 MPa) at room temperature. The electrical conductivity obeyed a T12 law over the range of 15 K< T < 300 K, which can be explained by an electron-electron interaction model. After annealing the amorphous alloy into primary crystallization, a nanocomposites consisted of metastable Ti2Ni and Zr2Ni nanophases with size less than 15 nm embedded in the amorphous matrix was appeared.