Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:44:24.468Z Has data issue: false hasContentIssue false

Formation and Properties of Porous GaAs

Published online by Cambridge University Press:  10 February 2011

P. Schmuki
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada, K1A 0R6
D. J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada, K1A 0R6
J. W. Fraser
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada, K1A 0R6
M. J. Graham
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada, K1A 0R6
H. S. Isaacs
Affiliation:
Materials Science Division, Department of Applied Science, Brookhaven National Lab., Upton, NY 11973, USA
Get access

Abstract

Porous structures on n-type GaAs (100) can be grown electrochemically in chloridecontaining solutions. Crystallographic etching of the sample is a precursor stage of the attack. Polarization curves reveal the existence of a critical onset potential for pore formation (PFP). The PFP is strongly dependent on the doping level of the sample and the presence of surface defects. Good agreement between the PFP and the breakdown voltage of the space charge layer is found. Surface analytical investigations by EDX, AES and XPS show that the porous structure consists mainly of GaAs and that anion uptake in the structure can only be observed after attack has been initiated. Photoluminescence measurements reveal – under certain conditions – visible light emission from the porous structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Whole edition of J. of Luminescence, 57, (1993).Google Scholar
2 Prokes, S. M., Interface, 3, 41 (1994).Google Scholar
3 Ferreira, N. G., Soltz, D., Decker, F., and Cescato, L., J. Electrochem. Soc., 142, 1348 (1995).Google Scholar
4 Erne, B. H., Vanmeakelbergh, D., and Kelly, J. J., Advanced Materials, 7, 739 (1995).Google Scholar
5 Tromans, D., Liu, G. G., and Weinberg, F., Corros. Sci., 35, 117 (1993).Google Scholar
6 Schmuki, P., Fraser, J., Vitus, C. M., Graham, M. J., and Isaacs, H., J. Electrochem. Soc., (submitted).Google Scholar
7 Schmuki, P., Fraser, J. W., Vitus, C. M., Graham, M. J., and Isaacs, H. S., Proc. of the Symposium “Critical Factors in Localized Corrosion 11”, Ed. Natishan, P. M., Kelly, R. G., Frankel, G. S., Newman, R. C., The Electrochemical Society, Proc. Vol.95–15, p. 226 (1995).Google Scholar
8 Schmuki, P., Sproule, G. I., Bardwell, J. A., Lu, Z. H., and Graham, M. J., J. Appl. Physics, (in press).Google Scholar
9 Sze, S. M., Physics of Semiconductor Devices, John Wiley & Sons, New York, (1981).Google Scholar
10 Gatos, H. C. and Lavine, M. C., J. Electrochem. Soc., 107, 472 (1960).Google Scholar
11 Seidel, H., Csepregi, A., Heuberger, A., and Baumgaertel, H., J. Electrochem. Soc., 137, 3612 (1990).Google Scholar
12 Tuck, B. and Baker, A. J., J. Mater. Sci., 8, 1549 (1973).Google Scholar
13 Schmuki, P., Lockwood, D. J., Labbé, H. J., and Fraser, J. W., Appl. Phys. Lett., (submitted for publication).Google Scholar