Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-03T19:34:58.514Z Has data issue: false hasContentIssue false

Formation And Hydrolytic Stabilty Of Oxygen Bridged Heterometal Bonds (Si-O-Ti, Si-O-Zr, Si-O-Ta) In Sol - Gel Materials

Published online by Cambridge University Press:  10 February 2011

M. Nacken
Affiliation:
Institut für Neue Materialien GmbH, Im Stadtwald, Geb. 43, D-66123 Saarbrucken, Germany
D. Hoebbel
Affiliation:
Institut für Neue Materialien GmbH, Im Stadtwald, Geb. 43, D-66123 Saarbrucken, Germany
H. Schmidt
Affiliation:
Institut für Neue Materialien GmbH, Im Stadtwald, Geb. 43, D-66123 Saarbrucken, Germany
Get access

Abstract

Glycidoxypropyltrimethoxysilane (GPTS) and metal alkoxides are frequently used in preparation of heterometal hybrid polymers and find application e. g. as contact lens materials and hard coatings on polymers. Such materials require a high homogeneity of the structural unit at the molecular level, which is supported by the formation of oxygen bridged heterometal bonds and their hydrolytic stability. By means of 29Si and 17O NMR the formation of heterometal bonds like Si-O-Ti, Si-O-Zr, Si-O-Ta was evidenced in GPTS-hydrolysates with Ti(OEt)4, Ti(OEt)3AcAc, Zr(OBun)4, Zr(OBun)3AcAc, Ta(OEt)5 or Ta(OEt)4AcAc (AcAc = acetylacetone ligand) as additives. Signals of heterometal bonds can be detected in 17O NMR spectra in the range of 170 to 350 ppm and are characterized in 29Si NMIR spectra by defined chemical shifts to low (Si-O-Ta) and high magnetic fields (Si-O-Ti, Si-O-Zr) in comparison with signals of Si-O-Si bonds. The use of AcAc modified metal alkoxides leads to well resolved 29Si NMR spectra, which make the distinction between homo- and heterocondensed species easier. The addition of water to the sols (2 H2O / alkoxy group) leads to a degradation of heterometal bonds in favour of more homocondensed species, which reduces the homogeneity of such hybrid materials at the molecular level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Philipp, G. and Schmidt, H., J. Non-Cryst. Solids 63, 283292 (1984).10.1016/0022-3093(84)90407-1Google Scholar
2. Schmidt, H., Seiferling, B., Philipp, G., Deichmann, K. Ultrastructure Processing of advanced ceramics, edited by Mackenzie, J. D. and Ulrich, D. R., (Wiley, New York 1988), p. 651.Google Scholar
3. Motakef, S., Suratwala, T., Roncone, R. L., Boulton, J. M., Teowee, G., Neilson, G. F., Uhlmann, D. R., J. Non-Cryst. Solids 178, 31 (1994).10.1016/0022-3093(94)90261-5Google Scholar
4. Hoebbel, D., Reinert, T., Schmidt, H., J. Sol-Gel Sci. Technol. 6, 139 (1996).10.1007/BF00425971Google Scholar
5. Hoebbel, D., Reinert, T., Schmidt, H. in Better Ceramics through Chemistry VII, edited by Coltrain, B. K., Sanchez, C., Schaefer, D. W., and Wilkes, G. L. (Mater. Res. Soc. Proc. 435, Pittsburgh, PA, 1996) pp. 461467.Google Scholar
6. Hoebbel, D., Nacken, M., Schmidt, H., J. Mater. Chem. 8 (1), 171178 (1998).10.1039/a702644gGoogle Scholar
7. Babonneau, F. in Better Ceramics through Chemistry VI, edited by Cheetham, A. K., Brinker, C. J., Mecartney, M. L., and Sanchez, C. (Mater. Res. Soc. Proc. 346, Pittsburg, PA, 1994) pp. 949960.Google Scholar
8. Delattre, L., Royund, M. Babonneau, F., J. Sol-Gel-Sci. Technol. 8, 567 (1997).Google Scholar
9. Babonneau, L. Delattre und F., Chem. Mater. 9, 2385 (1997).Google Scholar
10. Ouiuund, G. Grange, P., Bull. Chem. Soc. Jpn. 67, 2716 (1994).Google Scholar
11. Yamada, N., Yoshinagaund, I. Katayama, S., J. Mater. Chem. 7 (8), 14911495 (1997).10.1039/a700793kGoogle Scholar
12. Hoebbel, D., Nacken, M. and Schmidt, H., J. Sol-Gel Sci. Technol. 13, 37 (1998).10.1023/A:1008638918967Google Scholar
13. Day, V. W., Eberspacher, T. A., Klemperer, W. G., Park, C. W. and Rosenberg, F. S. Chemical Processing of Advanced Materials, edited by Hench, L. L. and West, J. K., (J. Wiley & Sons, New York, 1992), p. 257.Google Scholar
14. Stuart, T. J. Bastow und S. N., Chemical Physics 143, 459 (1990)Google Scholar
15. Sanchez, C., Livage, J., Henry, M. and Babonneau, F., J. Non-Cryst. Solids 100, 65 (1988).10.1016/0022-3093(88)90007-5Google Scholar
16. Livage, J., Henry, M. and Sanchez, C., Prog. Solid State Chem. 18, 259 (1988).10.1016/0079-6786(88)90005-2Google Scholar
17. Hoebbel, D., Nacken, M. and Schmidt, H., J. Sol-Gel Sci. Technol. 12, 169 (1998).10.1023/A:1008698201298Google Scholar