Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T09:54:24.301Z Has data issue: false hasContentIssue false

Formation and Characterization of Single Crystal Ni2MnGa Thin Films

Published online by Cambridge University Press:  15 February 2011

J. W. Dong
Affiliation:
Dept. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
L. C. Chen
Affiliation:
Dept. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
S. Mckernan
Affiliation:
Center for Interfacial Engineering, University of Minnesota, Minneapolis, MN 55455
J. Q. Xie
Affiliation:
Dept. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
M. T. Figus
Affiliation:
Dept. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
R. D. James
Affiliation:
Dept. of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455
C. J. Palmstrøm
Affiliation:
Dept. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

In this paper, molecular beam epitaxial growth of Ni2MnGa single crystal layers on GaAs (001) using a NiGa interlayer is reported. X-ray diffraction and transmission electron microscopy confirmed an epitaxial relationship of Ni2MnGa [100]“010] // GaAs [100] [010] and a tetragonal structure of the film (a = b = 5.79 Å, c = 6.07 Å). Magnetic measurements using vibrating sample and superconducting quantum interference device magnetometers revealed an in-plane magnetization of ∼200 emu/cm3at room temperature and a Curie temperature of ∼350 K. The martensitic phase transformation was observed to occur at ∼250 K

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1 Webster, P. J., Ziebeck, K. R. A., Town, S. L. and Peak, M. S., Philos. Mag. 49, 295 (1984).10.1080/13642817408246515Google Scholar
2 James, R. D. and Wuttig, M., Philos. Mag. A 77, 1273 (1998).10.1080/01418619808214252Google Scholar
3 Tickle, R. and James, R. D., J Magn. Magn. Mater. 195, 627 (1999).10.1016/S0304-8853(99)00292-9Google Scholar
4 Ezera, Y., Sozinov, A., Kimmel, G., Etelaniemi, V., Glavatskaya, N. I., D'Anci, A., Podgursky, V., Lindroos, V. K. and Ullakko, K., SPIE 3675, 244 (1999).Google Scholar
5 Dong, J. W., Chen, L. C., Palmstrøm, C. J., James, R. D. and McKernan, S., App. Phys. Lett. 75, 1443 (1999).10.1063/1.125009Google Scholar
6 Guivarc'h, A., Guerin, R. and Secoue, M., Electron. Lett. 23, 1004 (1987).10.1049/el:19870704Google Scholar
7 Sands, T., Palmstrøm, C. J., Harbison, J. P., Keramidas, V. G., Tabatabaie, N., Cheeks, T. L., Ramesh, R. and Silberberg, Y., Materials Science Reports 5,99 (1990).10.1016/S0920-2307(05)80003-9Google Scholar
8 Zasimchuk, I. K., Kokorin, V. V., Martynov, V. V., Tkachenko, A. V. and Chernenko, V. A., Fiz. Metal. Metalloved. 6, 110 (1990).Google Scholar
9 Zhu, J. G., Carter, C. B., Palmstrom, C. J. and Garrison, K. C., Appl. Phys. Lett. 55, 39 (1989).10.1063/1.101748Google Scholar