Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T10:37:21.006Z Has data issue: false hasContentIssue false

Folding Graphene with Swift Heavy Ions

Published online by Cambridge University Press:  11 August 2011

Sevilay Akcöltekin
Affiliation:
University of Duisburg-Essen, 47048 Duisburg, Germany.
Hanna Bukowska
Affiliation:
University of Duisburg-Essen, 47048 Duisburg, Germany.
Ender Akcöltekin
Affiliation:
University of Duisburg-Essen, 47048 Duisburg, Germany.
Henning Lebius
Affiliation:
CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5, France.
Marika Schleberger
Affiliation:
University of Duisburg-Essen, 47048 Duisburg, Germany.
Get access

Abstract

Swift heavy ion induced modifications on graphene were investigated by means of atomic force microscopy and Raman spectroscopy. For the experiment graphene was exfoliated onto different substrates (SrTiO3 (100), TiO2(100), Al2O3(1102) and 90 nm SiO2/Si) by the standard technique. After irradiation with heavy ions of 93 MeV kinetic energy and under glancing angles of incidence, characteristic folding structures are observed. The folding patterns on crystalline substrates are generally larger and are created with a higher efficiency than on the amorphous SiO2. This difference is attributed to the relatively large distance between graphene and SiO2 of d ≈ 1 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhou, W., Huang, Y., Liu, B., Hwang, K. C., Zuo, J. M., Buehler, M. J. and Gao, H., Appl. Phys. Lett. 90, 073107 (2007).10.1063/1.2535874Google Scholar
2. Patra, N., Wang, B. and Kral, P., Nano Lett. 9(11), 37663771 (2009).10.1021/nl9019616Google Scholar
3. Zhang, J., Xiao, J., Meng, X., Monroe, C., Huang, Y. and Zuo, J., Phys. Rev. Lett. 104, 166805 (2010).10.1103/PhysRevLett.104.166805Google Scholar
4. Allen, M. J., Wang, M., Jannuzzi, S. A. V., Yang, Y., Wang, K. L. and Kaner, R. B., Chem. Commun., 6285 (2009).Google Scholar
5. Cranford, S., Sen, D. and Buehler, M.J., Appl. Phys. Lett. 95, 123121 (2009).10.1063/1.3223783Google Scholar
6. Ni, Z., Wang, Y., Yu, T., You, Y. and Shen, Z., Phys. Rev. B 77, 235403 (2008).10.1103/PhysRevB.77.235403Google Scholar
7. Warner, J. H., Rümmeli, M. H, Bachmatiuk, A. and Büchner, B., 2010 Nanotechnology 21, 325702 (2010).10.1088/0957-4484/21/32/325702Google Scholar
8. Akcöltekin, S., Bukowska, H., Peters, T., Osmani, O., Monnet, I., Alzaher, I., Ban d’Etat, B., Lebius, H. and Schleberger, M., Appl. Phys. Lett. 98, 103103 (2011).10.1063/1.3559619Google Scholar
9. Liu, Z., Suenaga, K., Harris, P. J. F., and Iijimal, S., Phys. Rev. Lett. 102, 015501 (2009).10.1103/PhysRevLett.102.015501Google Scholar
10. Neubeck, S., You, Y. M., Ni, Z. H., Blake, P., Shen, Z. X., Geim, A. K., and Novoselov, K. S., Appl. Phys. Lett. 97, 053110 (2010).10.1063/1.3467468Google Scholar
11. Akcöltekin, E., Peters, T., Meyer, R., Duvenbeck, A., Klusmann, M., Monnet, I., Lebius, H., and Schleberger, M., Nature Nanotechnology 2, 290 (2007).10.1038/nnano.2007.109Google Scholar
12. Khalfaoui, N., Görlich, M., Müller, C., Schleberger, M. and Lebius, H., Nucl. Instrum. Methods B 245, 246 (2006).10.1016/j.nimb.2005.11.138Google Scholar
13. El-Said, A. S., Cranney, M., Ishikawa, N., Iwase, A., Neumann, R., Schwartz, K., Toulemonde, M. and Trautmann, C., Nucl. Instrum. Methods B 218, 492 (2004).10.1016/j.nimb.2003.12.057Google Scholar
14. Müller, A., Neumann, R., Schwartz, K. and Trautmann, C., Nucl. Instrum. Methods B 146, 393 (1998).10.1016/S0168-583X(98)00475-3Google Scholar
15. Ziegler, J.F. and Biersack, J.P., http://www.srim.org, 2008. At the date this paper was written, URLs or links referenced herein were deemed to be useful supplementary material to this paper. Neither the author nor the Materials Research Society warrants or assumes liability for the content or availability of URLs referenced in this paper.Google Scholar
16. Geim, A., Novoselov, K.S., Nature Materials 6 (2007) 183.10.1038/nmat1849Google Scholar
17. Akcöltekin, S., El Kharrazi, M., Köhler, B., Lorke, A., and Schleberger, M., Nanotechnology, 20, 155601(2009).10.1088/0957-4484/20/15/155601Google Scholar
18. Horcas, I., Fernandez, R., Gomez-Rodriguez, J. M., Colchero, J., Gomez-Herrero, J., and Baro, A. M., Rev. Sci. Instrum. 78, 013705 (2007).10.1063/1.2432410Google Scholar
19. Akcöltekin, S., Akcöltekin, E., Lebius, H. and Schleberger, M., J. Vac. Sci. Technol. B 27, 944 (2009).10.1116/1.3054199Google Scholar
20. Liu, J., Trautmann, C., Müller, C., and Neumann, R., Nucl. Instr.. and Meth. B 193, 259 (2002).10.1016/S0168-583X(02)00771-1Google Scholar
21. Medvedev, N., Osmani, O., Rethfeld, B., and Schleberger, M., Nucl. Instrum. Methods B 268, 3160 (2011).10.1016/j.nimb.2010.05.078Google Scholar
22. Osmani, O., Duvenbeck, A., Akcöltekin, E., Meyer, R., Lebius, H. and Schleberger, M., J. Phys.: Condens. Matter 20, 315001 (2008).Google Scholar
23. Akcöltekin, E., Akcöltekin, S., Osmani, O., Duvenbeck, A., Lebius, H. and Schleberger, M., New J. Phys. 10, 053007 (2008).10.1088/1367-2630/10/5/053007Google Scholar
24. Obraztsova, E. A., Osadchy, A. V., Obraztsova, E. D., Lefrant, S. and Yaminsky, I. V. Phys.Stat. Sol. (b) 245, 2055 (2008).10.1002/pssb.200879657Google Scholar