Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T09:43:36.366Z Has data issue: false hasContentIssue false

Fluoroalkyl Iodide Photodecomposition on Diamond (100) - an Efficient Route to The Fluorination of Diamond Surfaces

Published online by Cambridge University Press:  10 February 2011

V. S. Smentkowski
Affiliation:
University of Pittsburgh. Surface Science Center, Department of Chemistry, Pittsburgh PA, 15260, tel (412)-624-8320.(412)-624-6003.
J. T. Yates Jr
Affiliation:
University of Pittsburgh. Surface Science Center, Department of Chemistry, Pittsburgh PA, 15260, tel (412)-624-8320.(412)-624-6003.
Get access

Abstract

The photodecomposition of CF3I and C4F9I overlayers at 119 K on diamond (100) surfaces has been shown to be an efficient route to fluorination of the diamond surface. X-ray photoelectron spectroscopy (XPS) has been used for photoactivation as well as for studies of the following processes: the photodecomposition of the fluoroalkyl iodide molecules: the attachment of the photofragments to the diamond surface; and the thermal decomposition of the fluoroalkyl ligands. Chemisorbed CF3 groups on diamond (100) decompose by 300 K whereas C4F9 groups decompose over the temperature range of 300 K to ∼ 700 K. Both of these thermal decomposition processes produce surface C-F bonds on the diamond surface which thermally decompose over a wide temperature range extending up to 1500 K. Hydrogen passivation of the diamond surface is ineffective in preventing free radical attack from the photodissociated products of the fluoroalkyl iodides. The use of photoactivation of fluoroalkyl iodides for the fluorination of diamond surfaces provides a convenient route compared to other methods involving the direct production of atomic F, molecular fluorine, XeF2, and F containing plasmas.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Butler, J.E., Woodin, R.L., Phil. Trans. R. Soc. Lond. A. 342, 209 (1993): S.J. Harris, D.N. Belton, Thin Solid Films 212, 193 (1992); F.G. Celii, J.E. Butler, Ann. Rev. Chem. 42, 643 (1991): R.C. De Vries, Ann. Rev. Mater. Sci. 17, 161 (1987); J.C. Angus, C.C. Hayman, Science 241, 913 (1988).Google Scholar
2. Davis, R.F., Ed., Diamond Films and Coatings: Development, Properties, and Applications. (Noyes Publishing, New Jersey, 1993); J.E. Field, The Properties of Natural and Synthetic Diamonds, (Academic Publishers, New York, 1992): K.E. Spear, J.P. Dismukes. Eds., Synthetic Diamond: Emerging CVD Science and Technology, (Wiley Publishing, New York, 1993).Google Scholar
3. Spear, K.E.. J. Am. Chem. Soc. 72. 171 (1989): R.M. Chrenko. H.M. Strong, Report No. 75CRD089 (GE Corporate Research and Development Center), 1975.Google Scholar
4. Bachmann, P.K.. Messier, R.. Chemical and Engineering News 67 (20), 24 (1989).Google Scholar
5. Wei, J., Smentkowski, V.S., Yates, J.T. Jr., Critical Reviews in Surface Chemistry, in press.Google Scholar
6. Ritter, S.K., Chemical and Engineering News 73 (9), 39 (1995).Google Scholar
7. Handbook of Chemistry and Physics, 63rd ed (CRC Press, Florida, 19821983), p. F-199.Google Scholar
8. Hsu, D.S.Y., Turner, N.H., Proc. Fourth SDIO/IST ONR Diamond Technology Initiative Symposium, July 1989.Google Scholar
9. Patterson, D.E., Hauge, R.H., Margrave, I.L., in New Materials Approaches to Tribology: Theory and Applications, edited by Pope, L.E., Fehrenbacher, L.L., Winer, W.O (Mat. Res. Soc. Proc. 140. Pittsburgh, PA, 1989) pp. 351.Google Scholar
10. Freedman, A.. Stinespring, C.D., Appl. Phys. Lett. 57. 1194 (1990): Proc. Electrochem. Soc. 91. 494 (1991): New Diamond Sci. Technol.. Proc. Internat. Conf. 2. 321 (1991): in Chemical Perspectives of Microelectronic Materials II, edited by LV. Interrante (Mat. Res. Soc. Proc. 204 Pittsburgh, PA, 1991) pp. 571.Google Scholar
11. Morar, J.F., Himpsel, F.J., Hollinger, G., Jordon, J.L., Hughes, G., McFeely, F.R., Phys. Rev. B. 33, 1340 (1986); Phys. Rev. B. 33, 1346 (1986).Google Scholar
12. Cadman, P., Scott, J.D., Thomas, J.M., J. Chem. Soc. Chem. Comm. 1975. 654.Google Scholar
13. Smentkowski, V.S., Yates, J.T. Jr., Science, submitted.Google Scholar
14. Smentkowski, V. S., Yates, I.T., Jr., X. Chen. IIIGoddard, W.A., Surf. Sci., submitted.Google Scholar
15. Smentkowski, V.S.. Yates, J.T., Jr., J. Vac. Sci. Technol. All, 3002 (1993).Google Scholar
16. Smentkowski, V.S., Jansch, H.J., Henderson, M.A., Yates, J.T., Jr., Surf. Sci. 330, 207 (1995).Google Scholar
17. Bozack, M.J., Muehlhoff, L., Russell, J.N. Jr., Choyke, W.J., Yates, J.T., Jr., J. Vac. Sci. Technol. A 5, 1 (1987).Google Scholar
18. Cadman, P., Scott, J.D., Thomas, J.M., Surface and Interface Analysis 1, 115 (1979).Google Scholar
19. Pate, B.B., Surf. Sci. 165, 83 (1986); S. Evans, R.G. Pritchard, J.M. Thomas, J. Phys. C: Solid State Physics 10, 2483 (1977).Google Scholar
20. “Empirical Atomic Sensitivity Factors for MgKoc Irradiation”; (Leybold Vacuum Products, Inc., Export, PA, 1984). C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy, (Perkin Elmer Corporation. Eden Prairie. MN. 1979).Google Scholar
21. Tsumo, T., Imai, T., Nishibayashi, Y., Hamada, K., Fujimori, N., Japanese Journal of Applied Physics 30 (5), 1063 (1991); L.F. Sutcu, M.S. Thompson, C.J. Chu, R.H. Hauge, J.L. Margrave, M.P. D'Evelyn, Appl. Phys. Lett. 60 (14), 1686 (1992); K. V. Ravi, P.I. Oden, D.R. Yaniv, Proc. Electrochem. Soc. 93 (17), 766 (1993).Google Scholar
22. Ramsier, R.D., Yates, J.T., Jr. Surf. Sci. Reports 12, 243 (1991).Google Scholar
23. Okafo, E.N.. Whittle, E., Inter. J. of Chem. Kinetics 7, 287 (1975).Google Scholar
24. Okabe, H., Photochemistry of Small Molecules, (Wiley Press, New York, 1978).Google Scholar